

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

	1	7GEX01 BAS	C ELECTRICA	L AND ELECTR	RONICS ENG	INEERI	NG		
Acade	mic Year	2017-2018			Programme		B.E –		
:				ъ	_		CIVIL,MI	ECH	
Year /	Semester	I / II	Questio	on Bank	Course Coor	dinator:	Dr.T.SUR	ESH	
:							PADMAN		
	Co	urse Objective	s		Course C	Outcomes			
1. To in		c electrical termin		On the successful				l be able to	
and			U	CO1: Remember t					
2. To i	mpart knowle	dge on solving se	eries and		, electronics and				
	llel circuits			CO2: Apply basic	concepts to sol	ve problen	ns in DC and	I AC	
		ut the three phase		circuits					
		orking principle o	f dc and ac	CO3: Recall the pr		ation of DO	C, AC machi	nes and	
	hines, power			power plant					
		ut basic electroni		CO4: Summarize					
		its, transducers, c	ligital logic	CO5: Elucidate the			BJT and app	olications	
and c	communicatio	on systems			and oscillators		1 6 .		
				CO6: Explain the		ictional bio	ocks of vario	ous	
					tion systems				
S.No	[Questions	Mark Questions W	illi Key)	Montr	COs	BTL	
9.110	TT	NITI DCAND	AC CIRCUIT FU			Mark	COS	DIL	
	01								
1		he limitations of							
			ly to all non metall						
	ii. It does	not also apply to	nonlinear device su	ich as zener diode, v	vacuum tubes	1	1	K1	
	etc.						1	111	
				onstant temperature	. If the	1			
2	temper		e law is not applicat	ble.					
2			a motal is called al	ectric current. The	unit of ourront				
	is ampere.	nee electrons m	a metal is called el			1			
		rent is defined as	rate of flow of elec	tric charge			1	K1	
	Liceure cur	I = dq / dt	amperes	are enarge.			-		
	Where q is t	the charge in coul				1			
3	Define volt								
				unit positive charg		1			
				he applied electric f	ïeld.		1	K1	
			t. Voltage represent	ed by V.		1			
4	Define pow								
			ectrical energy or en	nergy supplied per		1			
		called the power.						77.1	
	D 111	D 22	V^2	Energy			1	K1	
	$\mathbf{P} = \mathbf{V} \mathbf{I};$	$P = I^-R;$	$\mathbf{P} = \frac{V^2}{R} \mathbf{P} = -\frac{V^2}{R}$	time		1			
5	Define resis			iiiitu					
			f a substance, whi	ch opposes the flow	w of	1			
				ctric friction. When					
				p occurs in it and			V1		
		n the form of heat		-			K1		
				neasured with a help	p of				
	ohmmeter					1			

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

				[
6	Two resistors of 10 ohms and 15 ohms an parallel. Find the equivalent resistance in				
	(i) Series connection: $R=R1+R2 = 10$	0+15 = 25 ohms	1		
	(ii) Parallel connection: R=R1 R2/ (R1	+R2) = 10x15/(10+15) = 6 ohms	1	2	K3
7	Give the meaning of electrical energy.				
	Energy is the total amount of work done an	d hence is the product of power and	1		
	time. $W = P t = V I t = I^2 R t =$	$=\frac{\mathbf{V}^2}{R}t$ watt-second	1	1	K1
	Bigger unit of electrical energy is Unit (1)		1		
8	Write down the expression for effective i				
Ũ	connected in series and parallel.				
	For series connection (for three resistor	s)			
	a. $R = R1 + R2 + R3$	-,	1		
	For parallel connection (for three resist	ors)	-	1	K1
	b. $\frac{1}{R} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R2}$		1		
9	State Kirchhoff's laws.	/ 105			
	Kirchhoff's current law		1		
	At a junction, the sum of currents flowing	ng towards the junction is equal to the	1		
	sum of the currents flowing away from i				
	Kirchhoff's voltage law			1	K1
	In a closed circuit, the sum of the potent	ial drops are equal to the sum of the			
	potential rises.	fur drops are equal to the sum of the	1		
10	State Ohm's law.				
	When temperature remains constant, the cu	rrent flowing through a conductor is	1		
	directly proportional to the potential different	u		1	K1
	$I \alpha V$ $V = IR$		1		
11	Define form factor.				
	Form factor is defined as the ratio of RMS	value to the average value.			
	RMS value	-	1	1	K1
	Form factor =		1	1	K1
	Average value				
12	Define crest (peak) factor.				
	Peak or crest factor is defined as the ratio o	f peak value to the RMS value.	1		
	peak value		1	1	K1
	Crest (peak) factor = $\frac{\text{peak } value}{\text{RMS } value}$		1		
13	Define power factor.				
	The power factor is the cosine of the phase	angle between voltage and current.			
	$\cos \varphi = \text{Resistance} / \text{Impedance}$	<u> </u>	1	1	K1
	$\cos \approx = \text{Real Power / Apparent power}$		1		
14	Differentiate rms and average value. (D	EC. 2017)			
	rms value	average value			
	It is the mean of the squares of the	It is the mean or average of the	1		
	instantaneous value of current over one	instantaneous values of current		1	K1
	complete cycle.	over one complete cycle.	1		
	RMS value =	AVG. value = $\frac{area \text{ of the curve}}{l}$	1		
		AvG. value = $base$			

	area of the squared curvebase or time periodFor a sinusoidal waveform, rms value=70.7% of peak value	For a sinusoidal waveform, avg value= 63.6% of peak value			
15	Define reactive power.				
	It is defined as product of the applied voltage and the reactive component of the current. It is also called as imaginary component of the apparent power. It is represented by " Q " and it is measured in unit volt-ampere reactive (VAR).		1	1	K1
	$Q = V I \sin \Theta$		1		

	PART – B (12 Mark Questions with Key)			
S.No	Questions	Mark	COs	BTL
UNIT-I -	- DC AND AC CIRCUIT FUNDAMENTALS			
1	Distinguish between series and parallel circuits.	6		
	Explain current and voltage division rules with examples.	3+3		
	Comparison	6	1	K2
	Current division rule	3		
	Voltage division rule	3		
2	Find the total resistance of the given circuit. Also find the total current and power delivered by the battery. (DEC. 2017)	12		
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2	К3
	series resistance = $12+10+7+3+8=40$ ohms	4		
	40 ohms in parallel with 10 ohms = 8 ohms	2		
	Total resistance = 8 ohms			
	Total current = $I = V/R = 24/8 = 3A$	3		
	Total power = $P = VI = 24 \times 3 = 72 \text{ W}$	3		
3	Determine the equivalent resistance across AB of the circuit shown below.	12	2	K3
	Inner 6 ohms delta to star 2ohms star network	3		

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

	1		1	
	Inner 2 ohms series with 2 ohms 4 ohms	2		
	Inner 4 ohms star to delta 12 ohms delta network	3		
	4 ohms and 12 ohms in parallel 3 ohms ; Final 3 ohms delta network	2		
	$R_{AB} = 3$ ohms parallel with 6 ohms = 2 ohms	2		
4	A series RC circuit with R =20 ohms and C = 127 microfarad has 160 V, 50	12		
	Hz supply connected to it. Find the circuit impedance, admittance, current,		2	КO
	voltage across different elements, power, power factor, reactive and		2	K3
	apparent power.			
	$X_{\rm C} = 1/2\pi$ fC = 25 ohms	1		
	$Z = SQRT (R^2 + X_C^2) = 32$ ohms	2		
	Y=1/Z=S	1		
	I = V/Z = 5 A	1		
	$V_{R} = I R = 100 V$	1		
	$V_{\rm C} = I X_{\rm L} = 125 V$	1		
	S = VI = 800 VA	1		
	Power factor = R/Z = lead	2		
	$P = VI \cos \theta = W$	1		
	$Q = V I \sin \theta = V A R$	1		
5	A 100 ohm resistor and a 20 mH inductor are connected in series across a	12		
3		12		
	230 V, 50 Hz supply. Find the circuit impedance, admittance, current,			
	voltage across different elements, power, power factor, reactive and			
	apparent power.	1		
	$X_L = 2\pi fL = 6.283 \text{ ohms}$	1		
	$Z = SQRT (R^2 + X_L^2) = 100.197$ ohms	2		
	$Y = 1/Z = 9.98 X 10^{-3} S$	1	2	K3
	I= V/Z= 2.295 A	1		
	$V_{R} = I R = 229.5 V$	l		
	$V_L = I X_L = 14.42 V$	l		
	S = VI = 527.85 VA	1		
	Power factor = R/Z = 0.998 lag	2		
	$P = VI \cos \theta = 526.7 W$	1		
	$Q = V I \sin \theta = VAR$	1		
6	In the given circuit, the total power delivered by the battery is 18 W.			
	Calculate the value of unknown resistance R and its current.			
	8-2 4-2			
	-m_			
	e l'			
	TL R 16.2			
			2	K3
	+ 1 -			
	12 V			
	Total current = $P/V = 18/12 = 1.5 A$	2	1	
	Total resistance = V/I = 12/1.5= 8 ohms	$\frac{2}{2}$		
	Total resistance = 8 parallel with $R + 4$ parallel with $16 = 8$	4	1	
	8R/(8+R) + 3.2=8; $R=12$ ohms	-7		
	I in 12 ohm resistor = 1.5 x 8 / (8+12) = 0.6 A	4	1	
	1 III 12 OIIII Teststor - 1.3 X o /(o+12) - 0.0 A	4		

	PART – C (20 Mark Questions with Key)						
S.No	Questions	Mark	COs	BTL			
UNIT-I -	UNIT-I – DC AND AC CIRCUIT FUNDAMENTALS						

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

1	Determine the rms value, average value, form factor and peak factor for the (i) Full rectified sine wave and (ii) half rectified sine wave	20		
	Full rectified sine wave: rms value calculation	3		
	average value calculation	32		
	form factor calculation peak factor calculation	2	2	K3
	Half rectified sine wave: rms value calculation	3		
	average value calculation	32		
	form factor calculation peak factor calculation	2		
2	Calculate the total power and energy consumption of your house with suitable assumptions and also calculate the bimonthly electricity bill with cost of 2 Rs/unit	20		
	List of loads with power rating and numbers (with assumptions- min. of 5 loads)	5	2	K3
	Table of power and energy calculation	10		
	bimonthly electricity bill calculation	5		

	UNIT II – THREE PHASE SYSTEM			
	PART – A (2 Mark Questions With Key)			
S.No	Questions	Mark	COs	BTL
1	What is phase sequence?			
	Phase sequence of a poly phase system is the order in which the different phase	2	1	K1
	quantities reach their maximum values.	2		
2	Give the relationship between the line and phase values in star connection.			
	The relation between line voltage and phase voltage in a star connection is $V_L = \sqrt{3}V_{ph}$	1	1	K1
	The relation between line current and phase current in a star connection is $I_L = I_{ph}$	1	1	IX1
3	Give the relationship between the line and phase values in delta connection.			
	The relation between line voltage and phase voltage in a delta connection is $V_L = V_{ph}$	1	1	K1
	The relation between line current and phase current in a star connection is $I_L = \sqrt{3}I_{ph}$	1	1	IX1
4	What are the methods of connections of 3Ø windings?			
	(1)Independent connection (2)Star connection (3) Delta	2	1	K1
	connection	2	1	IX1
5	List the advantages of three phase system over single phase system.			
	Generation, transmission and distribution of 3 Phase power is more			
	economical			
	Three phase machines have better power factor and efficiency	2	1	K1
	Three phase motors are self-starting			
	For same size, the capacity of 3 phase machine is high			
6	Define balanced supply and unbalanced supply.			
	The three phase supply is said to be balanced when all three phase voltages are equal in			
	magnitude and separated by 120° each other. Otherwise the system is said to be an	2	1	K1
	unbalanced one.			
7	Define balanced load and unbalanced load.			
	The three phase load is said to be a balanced load when all the three load impedances			***
	are identical and hence the load current in all three phases are equal in magnitude and	2	1	K1
0	separated by 120° each other. Otherwise the load is said to be an unbalanced one.			
8	List the main components of AC transmission and distribution system.		2	77.1
0	Transformers Transmission lines Insulators Protective devices	2	3	K1
9	Give the merits and demerits of single wattmeter method.			

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

	Merit: only one watt meter is used	1		
	Demerit: For unbalanced load single watt meter method doesn't give the correct three		1	K1
	phase power value.	1		
10	List the merits of measuring three phase power using two wattmeter method.			
	1)Only two wattmeter are sufficient to measure three phase power			
	2)Suitable for both balanced and unbalanced star and delta loads	2	1	IZ 1
	3)Using two wattmeter readings, it is possible to find total power, power factor and	2	1	K1
	reactive power of the load.			
11	Draw the three phase voltage waveform			
	1.0 0.5 0 -0.5 -1.0 Phase 1 Phase 2 Phase 3 0 0 0 120' 120'	2	1	K1
12	Draw the phasor diagram for positive and negative sequence voltages.(DEC. 2017)			
	Positive Sequence	1	1	K1
	v v	1		
13	Write the equations for three phase power and powerfactor measured using two wattmeter method.			
	Three phase power= $W1+W2$	1		
		1	1	K1
	Power factor = $\cos\varphi = \cos[\tan^{-1}(\sqrt{3}\frac{W1-W2}{W1+W2})]$	1	1	111
1.4	W + W Z	1		
14	Circuit diagram for three phase power measurement using single wattmeter			
	method for balanced star connected load			
15	W $R \rightarrow I_{RN}^{1}$ $R \rightarrow I_{$	2	1	K1
13				
	One-line diagram or single-line diagram (SLD) is a simplified notation for representing a three-phase power system. Electrical elements such as circuit breakers, transformers, capacitors, bus bars, and conductors are shown by standardized schematic symbols. Instead of representing each of three phases with a separate line or terminal, only one conductor is represented.	2	1	К1

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

C NT	PART – B (12 Mark Questions with Key)	M	00	D/TT
S.No	Questions	Mark	COs	BTL
1	Determine the line current, power factor, total power, reactive power and apparent power when a 3 phase 400 V supply is given to a balanced star connected load of impedance (15+j20) ohm in each branch.	12		
	$Z + I_{ph} + I_L + pf$	2+1+1+2		
	P + Q + S	2+1+1+2 2+2+2		
	$\sqrt{7} = \frac{1}{(R^2 + X_r^2)} - 25$ ohme		2	K3
	✓ $Z_{ph} = \sqrt{(R^2 + X_L^2)} = 25 \text{ ohms}$ ✓ $V_L = 400 \text{V}$ $V_{ph} = V_L / \sqrt{3} = 230.95 \text{ V}$		-	110
	$\checkmark I_{ph} = I_L = V_{ph} / Z_{ph} = 9.24A$			
	$\checkmark Pf = R/Z = 0.6 (lag)$			
	\checkmark P = $\sqrt{3}$ V _L I _L cos Θ = 3840.88 watts			
	\checkmark Q = $\sqrt{3}$ V _L I _L sin Θ = 5121.18 VAR			
	\checkmark S = $\sqrt{3}$ V _L I _L = 6401.47 VA			
2	Two watt meters are used to measure power in a three phase system and their readings are	12		
_	600 W and 300 watts. Find the total three phase power, power factor and reactive power.			
	Power + Power Factor + reactive power	4+4+4		
	✓ Three phase power = $W1+W2 = 600+300 = 900W$			
			2	K3
	✓ Power factor = $\cos\varphi = \cos[\tan^{-1}(\sqrt{3}\frac{W1-W2}{W1+W2})] = 0.866$			
	✓ Reactive power = $\sqrt{3}$ * (W1-W2) = 519.6 VAR			
	• Reactive power = $\sqrt{3}$ * (w1-w2) = 519.6 VAR			
3	Explain the single line diagram of a typical AC transmission and distribution	12		
5	system. (DEC. 2017)	12		
	Single line diagram + Components – explanation	4+8		
	Generating Station			
	Primary Transmission			
	AXAXXX			
	220/132 or 66 kV			
	Receiving Station			
	Secondary Transmission			
			3	K2
	132 OF 66kV / 11 kV		U	
	ACP' ACP'			
	Sub Station			
	20 ⁰			
	Primary Distribution			
	11 kV / 400 V Distribution Sub Station			
	Secondary Distribution			
	400 & 230 V			
	Consumers			
	Typical AC Power Supply System Scheme			
	By: Engr Wasim Khan			

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

4	i) Derive the relationship between line and phase voltages in a star connected	7		
	system.	5		
	ii) A balanced star connected load of 3+j4 ohms in each phase is connected to a 3		2	K3
	phase 400V supply. Find phase and line currents. Also find total power consumed by			
	the load.			
	i) Circuit + phasor diagram + Derivation	2+2+3		
	ii) $Z + I_{ph} + I_L + pf + P$	5*1=5		
	$Z_{ph} = \sqrt{(R^2 + X_L^2)} = 5$ ohms			
	$V_L = 400V$ $V_{ph} = V_L/\sqrt{3} = 230.95 V$			
	$I_{ph} = I_L = V_{ph} / Z_{ph} = 46.19 A$			
	Pf = R/Z = 0.6 (lag)			
	$P = \sqrt{3} V_L I_L \cos \Theta = 19200$ watts			
5	i) Derive the relationship between line and phase voltages in a delta connected	7		
	system.	5		
	ii) A balanced delta connected load of 8-j6 ohms in each phase is connected to a 3			
	phase 230V supply. Find phase and line currents. Also find total power consumed by			
	the load.			
	i) Circuit + phasor diagram + Derivation	2+2+3	2	K3
	ii) $Z + I_{ph} + I_L + pf + P$	5*1=5	2	K3
	$Z_{ph} = \sqrt{(R^2 + X_c^2)} = 10$ ohms			
	$V_L = 230V = V_{ph}$			
	$I_{ph} = V_{ph} / Z_{ph} = 23 A$			
	$I_L = \sqrt{3} I_{ph} = 39.84 A$			
	Pf = R/Z = 0.8 (lead)			
	$P = \sqrt{3} V_L I_L \cos \theta = 12696.53$ watts			
6	Determine the line current, power factor, total power, reactive power and apparent			
	power when a 3 phase 400 V 50 Hz supply is given to a balanced delta connected	12		
	load consisting of 16 ohms resistor in series with 38.2 mH inductor in each branch.			
	$Z + I_{ph} + I_L + pf$	2+1+1+2		
	P + Q + S	2+2+2		
	\checkmark X _L =2 π f L = 12 ohms			
	\checkmark $Z_{ph} = \sqrt{(R^2 + X_c^2)} = 20 \text{ ohms}$			
	$\checkmark V_{\rm L} = 400 \text{ V} = V_{\rm ph}$		2	K3
	$\checkmark I_{ph} = V_{ph} / Z_{ph} = 20 \text{ A}$			
	\checkmark I _L = $\sqrt{3}$ I _{ph} = 34.64 A			
	$\checkmark Pf = R/Z = 0.8 \text{ (lag)}$			
	\checkmark P = $\sqrt{3}$ V _L I _L cos θ = 19200 watts			
	$\checkmark Q = \sqrt{3} V_L I_L \sin \theta = 14400 \text{ VAR}$			
	\checkmark S = $\sqrt{3}$ V _L I _L = 24000 VA			
	1			

PART – C (20 Mark Questions with Key)					
S.No	Questions	Mark	COs	BTL	
1	Show that three phase power can be measured using two single phase watt meters.	20			
	Also derive expression for power factor in terms of wattmeter readings. (DEC. 2017)		1	K4	
	Circuit + Phasor diagram + Derivation for power + power factor	4+6+5+5		Λ4	

	I_{W} I_{W			
2	A balanced three phase load has an impedance of 7+j7 ohms in each phase. The load is fed with 3 phase 415V supply. The phase sequence is RYB. Determine the line current, phase current, power factor, power, reactive volt-ampere and volt-ampere if the load is (i) star connected (ii) delta connected.	20		
	Star: $I_L + pf + P + Q + S$	5*2		
	Delta: $I_L + pf + P + Q + S$	5*2		
	Star connection			
	✓ $Z_{ph} = \sqrt{(R^2 + X_L^2)} = 9.9 \text{ ohms}$ ✓ $V_L = 415 \text{V}$ $V_{ph} = V_L/\sqrt{3} = 239.6 \text{ V}$ ✓ $I_{ph} = I_L = V_{ph} / Z_{ph} = 24.2 \text{ A}$ ✓ $Pf = R/Z = 0.707 \text{ (lag)}$ ✓ $P = \sqrt{3} V_L I_L \cos \theta = 12298 \text{ watts}$ ✓ $Q = \sqrt{3} V_L I_L \sin \theta = 12298 \text{ VAR}$ ✓ $S = \sqrt{3} V_L I_L = 17394.5 \text{ VA}$		2	K3
	Delta connection			
	\checkmark Z _{ph} = $\sqrt{(R^2+X_L^2)}=9.9$ ohms			
	\checkmark V _L = 415 V = V _{ph}			
	\checkmark I _{ph} = V _{ph} / Z _{ph} = 41.92 A			
	✓ $I_L = \sqrt{3} I_{ph} = 72.6 \text{ A}$ ✓ $Pf = R/Z = 0.707$ (lag)			
	✓ $PI = R/Z = 0.707$ (lag) ✓ $P = \sqrt{3} V_L I_L \cos \theta = -36893.7$ watts			
	$\checkmark \qquad Q = \sqrt{3} V_L I_L \sin \theta = 36893.7 \text{ Watts}$			
	$\checkmark S = \sqrt{3} V_L I_L = 52183.43 VA$			

	UNIT III – ELECTRICAL MACHINES AND POWER PLANTS			
	PART – A (2 Mark Questions With Key)			
S.No	Questions	Mark	COs	BTL
1	Define back emf. Also give the importance of back emf in DC motor. (DEC. 2017)		3	K1
	When a motor rotates, emf is induced in the armature conductors and this induced emf	2	3	KI

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

				1
	opposes the supply voltage. This induced emf is called back emf (or) counter emf. $E_b = P \not O N Z / 60 A$ Volts.			
	The presence of back emf makes the d.c. motor a <i>self-regulating machine</i> i.e., it makes			
	the motor to draw as much armature current as is just sufficient to develop the torque			
	required by the load.			
2	Why single phase induction motor is not a self-starting motor?			
	When a single phase supply is fed to the stator winding, it produces only an alternating			
	flux i.e., one which alternates along one space axis only. Due to this, starting torque will	2	3	K2
	be zero. Hence the motor does not rotate.			
3	Write the voltage equation of motor.			
	$V = E_b + I_a R_a$ where V-Applied voltage, $E_b - Back EMF$,			
	I_a -Armature current & R_a -Armature resistance	2	3	K1
4	State Faraday's laws of electromagnetic induction.			
· · ·	First law: Whenever a current carrying conductor cuts the magnetic lines of force an	1		
	EMF is induced in it.	1	3	K1
	Second law: The induced EMF is directly proportional to the rate of change of flux.	1	5	
5	What is the use of commutator?	1		1
5	A device is used in a dc generator to convert the alternating emf into unidirectional emf is			
	called commutator.	2	3	K1
6	Classify DC generators.		5	
0	1.Self excited generator	1		1
	i) Series Generator ii) Shunt Generator iii) Compound Generator - Long shunt &	1		
			3	K1
	Short shunt - Cumulative & differential compound Generators	1	3	
7	2. Separately excited generator Whather Transformer work with DC supply? Justify the answer	1		ł
1	Whether Transformer work with DC supply? Justify the answer.Transformer won't work with DC supply. It works on the principle of mutual induction.			
	Hence it requires change of flux. But DC supply won't produces change in flux w.r.t	2	3	K1
		2	3	KI
8	time. Write the emformation of a transformer			
8	Write the emf equation of a transformer.			
	$E_1 = 4.44 \text{ Ø f } N_1 \text{ volts} \qquad E_2 = 4.44 \text{ Ø f } N_2 \text{ volts}$ $E_2 = 4.44 \text{ Ø f } N_2 \text{ volts}$	1		
	E_1 - Induced emf in primary E_2 - Induced emf in secondary		3	K1
	f – supply frequency Ø- Maximum flux in core	1		
0	N ₁ - no. of turns in primary N ₂ - no. of turns in secondary			
9	Sketch the circuit diagram for separately excited DC generator.			<u> </u>
	Armature current I _a = Load current I _L			
	R_n = Resistance of the armature winding			
	l _{ath} l _a = l _L			
	* * *] [* * *]			
	DC R			
	supply a transfer to the supply to the supply a transfer to the supply			
		2	3	K1
	Figure 4.10			
	Terminal voltage $V = E_g - I_a R_a - V_{brush}$			
	V_{brush} = voltage drop at the contacts of the brush.			
	Generally V _{brush} is neglected because of very low value.			
	Generated emf $E_g = V + I_a R_a + V_{brush}$.			
	Electric power developed = Eg Ia			
	Power delivered to load = $V I_n$			

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

sten-u	p transformer.			
	$I_1/I_2 = N_2/N_1 = K$			
	ansformation ratio, $E_1, E_2 - EMF$ induced in Primary & Secondary windings	1		
	Current in Primary & Secondary windings			
	– no. of turns in Primary & Secondary windings		3	K1
-	up transformer, no. of turns in primary winding is less than the no. of turns in	1		
	ary winding. Or $E_2 > E_1$			
	are the various losses that must be present in a transformer? Write the			
	ion for maximum efficiency of a transformer.			
	oss and copper loss	1	3	K1
	tion for maximum efficiency : Iron loss = copper loss	1		
	Fleming's Right hand rule.			
If thre	e fingers of right hand, namely thumb, index finger and middle finger are			
outstre	tched so that everyone of them is at right angles with the remaining two, and the			
	inger is made to point in the direction of lines of flux, thumb in the direction of	2	3	K1
	ative motion of the conductor and the middle finger gives the direction of the		-	
	d emf in the conductor.			
	it the various conventional and non-conventional power plants.			
	s of conventional power plant:	1		
	ro power plant 2. Steam power plant	1		
	lear power plant 4. Gas turbine power plant		2	77.1
Types	of non-conventional power plant:		3	K1
	r power plant 2. Wind power plant 3. Geothermal power plant			
	l power plant 5. Wave power plant 6. OTEC power plant	1		
	is a surge tank?			
	e tank is a small reservoir in which the water level rises or falls to reduce the			
-	e swings during opening and closing of inlet valve. The surge tank is not required		3	K1
	off plants and medium head plants.		5	
	he factors to be considered while choosing a site for steam power			
station	· · ·			
1.Supp	ly of fuel 2. Distance from populated area 3. Transportation facilities			
	and type of land 5. Nearness to load centers 6. Availability of water	2	3	K1
	PART – B (12 Mark Questions with Key)			
S.No	Questions	Mark	COs	BTL
-	n the working principle of DC generator with necessary diagrams. Also	12		
	an expression for the EMF generated.	12	3	K2
	ng principle	6	5	K2
EMF e	quation	6		
	n the operation of single phase transformer with EMF equation.	12		
Workir		6	3	K2
	quation	6		
	the layout of nuclear power plant and explain the function of each block in	12		1
	(DEC. 2017)	_	-	
Layout		4	3	K2
	of block	8		
	n the working of any one type of single phase induction motor with a neat	12		
	m and speed – torque characteristics. (DEC. 2017)	12	3	K2
Circuit		4		
Operat	1011	4		

	speed – torque characteristics	4		
5	Draw the layout of thermal power plant and explain the function of each block in	12		
	detail. (DEC. 2017)		3	К2
	Layout	4	5	K2
	Details of block	8		
6	Draw the layout of hydroelectric power plant and explain the function of each	12		
	block in detail.		3	К2
	Layout	4	5	K2
	Details of block	8		

	PART – C (20 Mark Questions with Key)			
S.No	Questions	Mark	COs	BTL
1	(i) A 25 KVA transformer has 500 turns on the primary and 50 turns on the secondary winding. The primary is connected to 3000 V, 50 Hz supply. Find the full load primary and secondary current, the secondary emf and maximum flux in the core. Neglect leakage drops and no load primary current. (DEC. 2017)	12		
	(ii) The number of primary and secondary turns of an ideal transformer is 150 and 300 respectively. The transformer is connected to a 220V, 50 Hz source. Determine i) turns ratio ii) mutual flux in core (DEC. 2017)	8		
		(4*3) = 12	3	К3
	(ii) Turns ratio and mutual flux a. $N_1 = 150$ turns $N_2 = 300$ turns $E_1 = 220$ V f = 50 Hz b. $K = N_2 / N_1 = 2$ $E_1 = 4.44$ f Ø N_1 Ø = 6.61 mwb	(4*2) = 8		
2	 (i) A 4 pole wave wound generator has 40 slots and 10 conductors placed per slot. The flux per pole is 0.02 webers. Calculate the generated emf when the generator is driven at 1200 rpm. (ii) A DC motor connected to 460V supply has an armature resistance of 0.15 ohms. Calculate (i) the value of back emf when armature current is 120A and (ii) the value of armature current when the back emf is 471V. 	10 10	3	
	(i) E_g P=4 No of conductors = no of slots X no of conductors per slot = 400 = Z $\emptyset = 0.02 \text{ wb}$ N 1200 rpm $E_g = P \emptyset \text{ N } Z / 60 \text{ A} = 160 \text{ V}$	10		K3
	$\begin{array}{c cccc} (ii) & E_b \& I_a \\ V-Applied \ voltage = 460 \ V & Eb - Back \ EMF \ Ra-Armature \ resistance \ = 0.15 \ ohms \\ (i) & Eb = ? & Ia \ Armature \ current \ = 120A \\ V = Eb + Ia \ Ra & Eb = V - Ia \ Ra \ = 442 \ V \end{array}$	5+5 = 10		
	(ii) $Ia = ? Eb = 471 V$ Ia = (V-Eb) / Ra = -73.33A			

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

UNIT IV – SEMICONDUCTOR DEVICES AND TRANSDUCERS PART – A (2 Mark Questions With Key)						
S.No	Questions	Mark	COs	BTL		
1	Define a semiconductor.					
	A semiconductor material is an element with 4 valance electrons and whose electrical properties lie in between that of insulators and conductors.	2	5	K2		
2	What is Fermi level?	2	5	K2		
	At room temperature the maximum energy level occupied by an electron is at the middle of the forbidden energy gap, it is known as "Fermi Level".					
3	What is P-type semiconductor? Give example.	2	5	K2		
	When a small amount of trivalent impurity is added to pure semiconductor, 'P' type semiconductor is formed. Examples for the trivalent impurity are boron, gallium, Indium etc.					
4	What is meant by energy band?	2	5	K2		
5	In case of a solid, instead of single energy levels associated with the single atom, there will be bands of energy levels. A set of such closely packed energy levels are called an energy band. Draw the energy band diagrams for conductor, semiconductor and insulators.	2	5	K2		
6	metal semiconductor insulator Define PIV of a diode. (DEC. 2017) For rectifier applications, <i>peak inverse voltage (PIV)</i> or peak reverse voltage (PRV) is the maximum value of reverse voltage which occurs at the peak of the input cycle when the <i>diode</i> is reverse-biased	2	5	K2		
		1				

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

AC Input Vs Vs Vs Vour Vs Vour Vou			
8 What is an amplifier?	2	5	K2
An amplifier is a circuit used to increase the magnitude of the input current or voltage			
at the output by means of energy drawn from an external source.			
9 Define Oscillator.	2	5	K2
An oscillator is a circuit which produces a continuous, repeated, alternating waveform		5	114
without any input. Oscillators basically convert unidirectional current flow into			
oscillations.			
	2	5	VO
10 What are the types of oscillator? Sinusoidal and non-sinusoidal oscillators	2	3	K2
RC oscillators: Wien Bridge & Phase-Shift oscillators			
LC oscillators: Hartley & Colpitts oscillators			
Unijunction / relaxation oscillators			
11 What are the applications of LVDT?	2	5	K2
1. LVDT is used to measure displacement ranging from millimeter to centimeter. 2.			
Acting as a secondary transducer. 3. LVDT can be used as a device to measure			
force, weight and pressure.			
12 What is Resistance temperature detector?	2	5	K2
Resistance Temperature Detectors - are temperature sensors that contain a resistor that			
changes resistance value as its temperature changes Most RTD elements consist of			
a length of fine coiled wire wrapped around a ceramic or glass core.			
13 Define transistor biasing?	2	5	K2
The proper flow of zero signal dc collector current and the maintenance of proper		~	
collector emitter voltage during the passage of signal is known as transistor biasing.			
14 List the applications of BJT.	2	5	K2
1. Act as a switch 2. Amplifier			
15 What are the disadvantages of half wave rectifier?	2	5	K2
1. Low rectification efficiency 2. Low TUF 3. High ripple factor			
PART – B (12 Mark Questions with Key)			
S.No Questions	Mark	COs	BTL
1 Explain the construction, operation and V-I characteristics of PN junction diode.	12		
PN junction diode construction	4	5	K2
operation	4	5	112
V-I characteristics	4		

10	Compare the three different transistor configurations in detail.	12	5	K2
	Output characteristics	3		
	Input characteristics	3	5	K2
	Operation	3	F	W.C.
	Circuit	3		
,	configuration. (DEC. 2017)	14		
9	Explain the input and output characteristics of common collector (CC)	12		
	Output characteristics	3 3		
	Input characteristics	3 3	5	K2
	Operation	3 3		
	Circuit	3		<u> </u>
8	Explain the input and output characteristics of common emitter (CE) configuration.	12		
0	Output characteristics	3		
	Input characteristics	3		
	Operation	3	5	K2
	Circuit	3		
7	Explain the input and output characteristics of common base (CB) configuration.	12		
	Applications	2		<u> </u>
	Advantages, disadvantages	4		
	Characteristics/graph	2	5	
	RTD construction diagram, working principle	4	5	K2
	temperature detector (RTD).			
6	Describe in detail about the working principle and operation of resistance	12		
	Applications	2		
	Advantages, disadvantages	4		
	Characteristics/graph	2	5	
	LVDT construction diagram, working principle	4	5	K2
	differential transformer (LVDT).			
5	Describe in detail about the working principle and operation of linear variable	12		
	Features of HWR	3		
	waveforms	3		
	HWR operation	3	5	112
	Half wave rectifier circuit diagram	3	5	K2
	waveforms. Also list the features. (DEC. 2017)			
4	Explain the operation of half wave rectifier with neat circuit diagram and	12		
	advantages	3		
	waveforms	3		
	operation	3	5	K2
	Full wave bridge rectifier circuit diagram	3	5	K2
	waveforms. Also list the advantages. (DEC. 2017)			
3	Explain the operation of full wave bridge rectifier with neat circuit diagram and	12		
	V-I characteristics	4		
	operation	4		
	(DEC. 2017) Zener diode construction	4	5	K2

	PART – C (20 Mark Questions with Key)			
S.No	Questions	Mark	COs	BTL

1	(i) Classify amplifiers and give their applications	10			
	(ii) Classify aniphicits and give their applications (iii) Classify oscillators and give their applications	10			
-	Amplifier-classification, applications	5+5	- 5	5	K3
-	Oscillator- classification, applications	5+5			
2	Distinguish between amplifiers and oscillators. Explain any one amplifier and also	20			
	an oscillator in detail.	-			
ľ	Comparison between amplifiers and oscillators	6	5	5	K3
	Amplifier-circuit diagram, working, applications	7			
	Oscillator-circuit diagram, working, applications	7			
	UNITV-DIGITAL ELECTRONICS AND COMMUNICATIO	N SYS	TEN	1S	
	PART – A (2 Mark Questions With Key)				
S.No	Questions	Mark	C	Os	BTL
1	State Demorgan's theorem. (DEC. 2017)				
	Demorgan's first law: This law states that the complement of the sum of the variables equa	als			
	the product of a complement of each variable. Equation -1				
	Demorgan's second law: This law states that the complement of the product (of the variable	es)			
	equals the sum of a complements of each variable. Equation -2	/	2	4	K3
	$\overline{A + B} = \overline{A} \cdot \overline{B}$		2		
	$A + B = A \cdot B$				
	$\overline{A} \cdot \overline{B} = \overline{A} + \overline{B}$				
2	State the laws of Boolean Algebra.		2	4	K3
i					
	1) $X \cdot 0 = 0$ 10A) $X \cdot Y = Y \cdot X$ Commutative				
	2) X · 1=X 10B) X + Y = Y + X Law				
	1) $X \cdot 0 = 0$ 2) $X \cdot 1 = X$ 3) $X \cdot X = X$ 10A) $X \cdot Y = Y \cdot X$ 10B) $X + Y = Y + X$ Law 11A) $X(YZ) = (XY)Z$ Associative				
	3) $X \cdot X = X$ 4) $X \cdot X = 0$ 11A) $X(YZ) = (XY)Z$ 11B) $X + (Y+Z) = (X+Y) + Z$ Law				
	3) $X \cdot X = X$ 4) $X \cdot X = 0$ 11A) $X(YZ) = (XY)Z$ 11B) $X + (Y+Z) = (X+Y) + Z$ Law				
	3) $X \cdot X = X$ 11A) $X(YZ) = (XY)Z$ Associative4) $X \cdot \overline{X} = 0$ 11B) $X + (Y + Z) = (X + Y) + Z$ Associative5) $X + 0 = X$ 12A) $X(Y + Z) = XY + XZ$ Distributive6) $X + 1 = 1$ 12B) $(X + Y)(W + Z) = XW + XZ + YW + YZ$ Distributive				
	3) $X \cdot X = X$ 4) $X \cdot X = 0$ 11A) $X(YZ) = (XY)Z$ 11B) $X + (Y+Z) = (X+Y) + Z$ Law				
	3) $X \cdot X = X$ 11A) $X(YZ) = (XY)Z$ Associative4) $X \cdot X = 0$ 11B) $X + (Y + Z) = (X + Y) + Z$ Associative5) $X + 0 = X$ 12A) $X(Y + Z) = XY + XZ$ Distributive6) $X + 1 = 1$ 12B) $(X + Y)(W + Z) = XW + XZ + YW + YZ$ Law7) $X + X = X$ 13A) $X + XY = X + Y$				
	3) $X \cdot X = X$ 4) $X \cdot \overline{X} = 0$ 5) $X + 0 = X$ 6) $X + 1 = 1$ 7) $X + \overline{X} = X$ 8) $X + \overline{X} = 1$ 9) $\overline{X} = X$ 11A) $X(YZ) = (XY)Z$ 11B) $X + (Y + Z) = (X + Y) + Z$ 11B) $X + (Y + Z) = (X + Y) + Z$ 11B) $X + (Y + Z) = (X + Y) + Z$ 12A) $X(Y + Z) = XY + XZ$ 13A) $X + \overline{XY} = X + Y$ 13B) $\overline{X} + XY = \overline{X} + Y$ 13C) $X + \overline{XY} = X + \overline{Y}$ Consensus Theorem				
	3) $X \cdot X = X$ 4) $X \cdot \overline{X} = 0$ 5) $X + 0 = X$ 6) $X + 1 = 1$ 7) $X + \overline{X} = X$ 8) $X + \overline{X} = 1$ 9) $\overline{X} = X$ 11A) $X(YZ) = (XY)Z$ 11B) $X + (Y + Z) = (X + Y) + Z$ 11B) $X + (Y + Z) = (X + Y) + Z$ 11B) $X + (Y + Z) = (X + Y) + Z$ 12A) $X(Y + Z) = XY + XZ$ 13A) $X + \overline{XY} = X + Y$ 13B) $\overline{X} + XY = \overline{X} + Y$ 13C) $X + \overline{XY} = X + \overline{Y}$ Consensus Theorem				
	3) $X \cdot X = X$ 4) $X \cdot \overline{X} = 0$ 5) $X + 0 = X$ 6) $X + 1 = 1$ 7) $X + \overline{X} = X$ 8) $X + \overline{X} = 1$ 9) $\overline{X} = X$ 11A) $X(YZ) = (XY)Z$ 11B) $X + (Y + Z) = (X + Y) + Z$ 11B) $X + (Y + Z) = (X + Y) + Z$ 11B) $X + (Y + Z) = (X + Y) + Z$ 12A) $X(Y + Z) = XY + XZ$ 13A) $X + \overline{XY} = X + Y$ 13B) $\overline{X} + XY = \overline{X} + Y$ 13C) $X + \overline{XY} = X + \overline{Y}$ Consensus Theorem				
	3) $X \cdot X = X$ 4) $X \cdot \overline{X} = 0$ 5) $X + 0 = X$ 6) $X + 1 = 1$ 7) $X + \overline{X} = X$ 8) $X + \overline{X} = 1$ 9) $\overline{X} = X$ 11A) $X(YZ) = (XY)Z$ 11B) $X + (Y + Z) = (X + Y) + Z$ 11B) $X + (Y + Z) = (X + Y) + Z$ 11B) $X + (Y + Z) = (X + Y) + Z$ 12A) $X(Y + Z) = XY + XZ$ 13A) $X + \overline{XY} = X + Y$ 13B) $\overline{X} + XY = \overline{X} + Y$ 13C) $X + \overline{XY} = X + \overline{Y}$ Consensus Theorem				
	3) $X \cdot X = X$ 11A) $X(YZ) = (XY)Z$ Associative Law4) $X \cdot \overline{X} = 0$ 11B) $X + (Y + Z) = (X + Y) + Z$ Associative Law5) $X + 0 = X$ 12A) $X(Y + Z) = XY + XZ$ Distributive Law6) $X + 1 = 1$ 12B) $(X + Y)(W + Z) = XW + XZ + YW + YZ$ Distributive Law7) $X + X = X$ 13A) $X + \overline{X}Y = X + Y$ Consensus				
3	3) $X \cdot X = X$ 4) $X \cdot \overline{X} = 0$ 5) $X + 0 = X$ 6) $X + 1 = 1$ 7) $X + X = X$ 9) $\overline{X} = X$ 11A) $X(YZ) = (XY)Z$ 11B) $X + (Y + Z) = (X + Y) + Z$ 12A) $X(Y + Z) = XY + XZ$ 12A) $X(Y + Z) = XY + XZ$ 12B) $(X + Y)(W + Z) = XW + XZ + YW + YZ$ 13A) $X + \overline{XY} = X + Y$ 13B) $\overline{X} + XY = \overline{X} + \overline{Y}$ 13B) $\overline{X} + X\overline{Y} = \overline{X} + \overline{Y}$ 13D) $\overline{X} + X\overline{Y} = \overline{X} + \overline{Y}$ 14B) $\overline{X} + \overline{Y} = \overline{X} + \overline{Y}$ Distributive Law Consensus Theorem 14B) $\overline{X} + \overline{Y} = \overline{X} + \overline{Y}$ DeMorgan's 6				
3	3) $X \cdot X = X$ 4) $X \cdot \overline{X} = 0$ 5) $X + 0 = X$ 6) $X + 1 = 1$ 7) $X + \overline{X} = X$ 8) $X + \overline{X} = 1$ 9) $\overline{X} = X$ 11A) $X(YZ) = (XY)Z$ 11B) $X + (Y + Z) = (X + Y) + Z$ 11B) $X + (Y + Z) = (X + Y) + Z$ 11B) $X + (Y + Z) = (X + Y) + Z$ 12A) $X(Y + Z) = XY + XZ$ 13A) $X + \overline{XY} = X + Y$ 13B) $\overline{X} + XY = \overline{X} + Y$ 13C) $X + \overline{XY} = X + \overline{Y}$ Consensus Theorem				

4	A O O O O O O O O O O O O O O O O O O O	2	4	K2
	$Q = \overline{A} \cdot \overline{B}$			
5	Give logic diagram and truth table of NOR gate.	2	4	K2
		-		112
	NOR gate Input _A Output $\boxed{A \ B \ Output}$ Output $\boxed{A \ B \ Output}$ $\boxed{O \ 1}$ $\boxed{O \ 1}$			
6	Draw the logic symbol and truth table of EX-OR gate.	2	4	K2
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
7	Draw the block diagram of a communication system.	2	6	K2
	I/p Signal Input Transmitter Channel Receiver Output transducer Sound, data etc Noise Fig: Basic analog communication system			
8	Give the difference between wired and wireless network. (DEC. 2017)	2	6	K2
	"Wired" is the term refers to any physical medium consisting of cables. The cables can be copper wire, twisted pair or fiber optic. "Wireless" is the term refers to medium made of electromagnetic waves (i.e. EM Waves) or infrared waves. All the wireless devices will have antenna or sensors. Typical wireless devices include cellular mobile, wireless sensors, TV remote, satellite disc receiver, laptops with WLAN card etc.			
9	Define analog signal.	2	6	K2
	The amplitude of the signal is varies continuously with time. This signal is called analog signal.			
10	Example, voltage or current varies continuously with time.			1/2
10	What is meant by modulation?	2	6	K2
	Modulation is the process of varying one or more properties of a periodic waveform, called the			

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

11	carrier signal, with a modulating signal that typically contains information to be transmitted.	~	-	
11	Define pulse width modulation.	2	6	K2
	In pulse width modulation, the width of the carrier pulse is varied accordance to message signal amplitude.			
12	Give the applications of fibre optic communication system.	2	6	K2
	Applications			
	1. Long distance telephone system.			
	2. Interconnect computers in networks within a large building.			
	3. Carry control signals in airplanes and ships.			
	4. Secure communications systems at military bases.			
	5. Shipboard and Aircraft communications.			
	6. Plant and traffic control.			
	Data acquisition and control signal communications in industrial process control systems.			
	8. Nuclear plant instrumentation.			
13	List advantages and disadvantages of Fibre-optic communication.	2	6	K
	Advantages and Disadvantages of Fiber Optics • Advantages: • Huge bandwidth: • Ethernet cable: 1Gbps • Fiber optics: 250Gbps • Immunity to electrical noise • No crosstalk • Reduced size and weight cables • Resistance to corrosion and temperature variations. • Disadvantages: • Expensive in comparison with conventional electrical cables. • Expensive and difficult installation.			
14	What is microwave? (DEC. 2017) Give the advantages of Microwave communication.	2	6	K
	Microwave is an electromagnetic wave with a wavelength in the range 0.001–0.3 m, shorter than that of a normal radio wave but longer than those of infrared radiation. Microwaves are used in radar, in communications, and for heating in microwave ovens and in various industrial processes.			
	 Reliability and high quality. Noise immunity for data, voice or video signals. Capable of using frequency bands above 10GHz. High RF spectrum efficiency. Ability to accommodate increased telephone traffic, economically and conveniently. 			
15	Compare AM and FM	2	6	K
	Amplitude Modulation Frequency Modulation			

E.G.S. PILLAY ENGINEERING COLLEGE (An Autonomous Institution, Affiliated to Anna University, Chennai)

Nagore Post, Nagapattinam – 611 002, Tamilnadu.

1.The amplitude of AM signal	1. The amplitude of FM signal		
is Varies depending on modulating signal.	is Constant and independent of		
	depth of modulation.		
2. Transmitters are simple and cheap.	2. Transmitters are complex and Expensive.		
3. Bandwidth (BW) is very small.	3. BW is very high.		
4. Area of reception is large.	4. Area of reception is small.		
5. Noise cannot be easily minimized.	5. Noise can be easily minimized.		

S.No	Questions	Mark	COs	BTL
1	Why NAND and NOR gates are known as Universal gates? Explain in detail.	12		K3
	Reason for Universal gates	2	4	
	Realization of OR, AND & NOT gates using NAND gate	5	4	КЗ
	Realization of OR, AND & NOT gates using NOR gate	5		
2	Explain the operation of microwave communication in detail.	12		
	Microwave communication-block diagram	6	6	K2
	Explanation, merits, demerits	6		
3	Describe about the operation of satellite communication using block diagram.	12		
	Satellite communication-block diagram	6	6	K2
	Explanation, merits, demerits	6		
4	Describe about fiber optic communication in detail. (DEC. 2017)	12	6	K2
	Fiber optic communication-block diagram	6		
	Explanation, merits, demerits	6		
5	Enumerate about cellular mobile communication in detail. (DEC. 2017)	12		K2
	Cellular mobile communication-block diagram	6	6	
	Explanation, merits, demerits	6		
6	Write short notes on (i) Amplitude modulation and (ii) frequency modulation	12		K2
	Amplitude modulation -block diagram, working, explanation	6	6	
	frequency modulation- block diagram, working, explanation	6		
7	Write short notes on (i) PAM (ii) PWM and (iii) PPM	12		
	PAM-block diagram, working, explanation	4	6	К2
	PWM -block diagram, working, explanation	4	0	K 2
	PPM -block diagram, working, explanation	4		
	PART – C (20 Mark Questions with Key)			
S.No	Questions	Mark	COs	BTI
1	Explain the operation of the following logic gates with necessary truth table (i) AND (ii) OR (iii) NOT (iv) NAND (v) NOR (vi) EX-OR (vii) EX-NOR	20	4	K2
	(i) AND (ii) OR (iii) NOT logic gates- symbol, truth table, explanation	3×2=6		
	(iv) NAND (v) NOR- symbol, truth table, explanation	2×3=6		
	(vi) EX-OR (vii) EX-NOR- symbol, truth table, explanation	2×4=8	-	
2	 (i) Reduce the following Boolean expressions and implement using logic gates (a) AB+A(B+C)+B(B+C) (b) 	10		
	$\overline{ABC} + A\overline{BC} + \overline{ABC} + A\overline{BC} + A\overline{BC} + ABC$ (ii)Reduce the following expressions using De-Morgan's theorem and implement using logic gates	10	4	К3

(b) $F_1 = \overline{(\overline{X \cdot \overline{Y}}) \cdot (\overline{Y} + Z)}$		
$F_2 = \overline{(\overline{X} + Z)(\overline{XY})}$		
(i)Reduction of Boolean expressions, implementation	2×5=10	
(ii)Reduction of expressions using De-Morgan's theorem, implementation	2×5=10	