	E.G.S. PILLAY ENGINEERING COLLEGE (An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam - 611 002, Tamilnadu.	$\begin{gathered} \text { Rev. } 0 \\ \text { COE/2017/QB } \end{gathered}$

17GEX01 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING

	E.G.S. PILLAY ENGINEERING COLLEGE (An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam - 611 002, Tamilnadu.	$\begin{gathered} \text { Rev. } 0 \\ \text { COE/2017/QB } \end{gathered}$

| E.G.S. PILLAY ENGINEERING COLLEGE | |
| :---: | :---: | :---: |
| Rev. 0 | |

	$\sqrt{\frac{\text { area of thesquaredcurve }}{\text { base or time period }}}$			
15	For a sinusoidal waveform, rms value $=$ 70.7% of peak value	For a sinusoidal waveform, avg value $=63.6 \%$ of peak value		
	It is defined as product of the applied voltage and the reactive component of the current. It is also called as imaginary component of the apparent power. It is represented by "Q" and it is measured in unit volt-ampere reactive (VAR). Q=V I sin Θ	1	1	K1

PART - B (12 Mark Questions with Key)				
S.No	Questions	Mark	COs	BTL
UNIT-I - DC AND AC CIRCUIT FUNDAMENTALS				
1	Distinguish between series and parallel circuits. Explain current and voltage division rules with examples.	$\begin{gathered} 6 \\ 3+3 \end{gathered}$	1	K2
	Comparison	6		
	Current division rule	3		
	Voltage division rule	3		
2	Find the total resistance of the given circuit. Also find the total current and	12	2	K3
	series resistance $=12+10+7+3+8=40$ ohms 40 ohms in parallel with 10 ohms $=8$ ohms Total resistance $=8$ ohms	$\begin{aligned} & 4 \\ & 2 \end{aligned}$		
	Total current $=\mathrm{I}=\mathrm{V} / \mathrm{R}=24 / 8=3 \mathrm{~A}$	3		
	Total power $=\mathrm{P}=\mathrm{VI}=24 \times 3=72 \mathrm{~W}$	3		
3	Determine the equivalent resistance across AB of the circuit shown below.	12	2	K3
	Inner 6 ohms delta to star --- 2 ohms star network	3		

	E.G.S. PILLAY ENGINEERING COLLEGE (An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam - 611 002, Tamilnadu.	$\begin{gathered} \text { Rev. } 0 \\ \text { COE/2017/QB } \end{gathered}$


	```Inner 2 ohms series with 2 ohms ---- 4 ohms Inner 4 ohms star to delta ------- 12 ohms delta network 4 ohms and 12 ohms in parallel ---- 3 ohms;Final 3 ohms delta network R```	$\begin{aligned} & 2 \\ & 3 \\ & 2 \\ & 2 \end{aligned}$		
4	A series RC circuit with $R=\mathbf{2 0}$ ohms and $C=127$ microfarad has $\mathbf{1 6 0} \mathrm{V}$, 50 Hz supply connected to it. Find the circuit impedance, admittance, current, voltage across different elements, power, power factor, reactive and apparent power.	12	2	K3
	$\begin{aligned} & \mathrm{X}_{\mathrm{C}}=1 / 2 \pi \mathrm{fC}=25 \text { ohms } \\ & \mathrm{Z}=\mathrm{SQRT}\left(\mathrm{R}^{2}+\mathrm{X}_{\mathrm{C}}{ }^{2}\right)=32 \mathrm{ohms} \\ & \mathrm{Y}=1 / \mathrm{Z}=\mathrm{S} \\ & \mathrm{I}=\mathrm{V} / \mathrm{Z}=5 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{R}}=\mathrm{I} \mathrm{R}=100 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{C}}=\mathrm{I} \mathrm{X}_{\mathrm{L}}=125 \mathrm{~V} \\ & \mathrm{~S}=\mathrm{VI}=800 \mathrm{VA} \\ & \text { Power factor }=\mathrm{R} / \mathrm{Z}=\text { lead } \\ & \mathrm{P}=\mathrm{VI} \operatorname{cose}=\quad \mathrm{W} \\ & \mathrm{Q}=\mathrm{V} \text { I sine }=\quad \mathrm{VAR} \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 1 \\ & 1 \end{aligned}$		
5	A 100 ohm resistor and a 20 mH inductor are connected in series across a $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Find the circuit impedance, admittance, current, voltage across different elements, power, power factor, reactive and apparent power.	12		
	$\begin{aligned} & \mathrm{X}_{\mathrm{L}}=2 \pi \mathrm{fL}=6.283 \text { ohms } \\ & \mathrm{Z}=\mathrm{SQRT}\left(\mathrm{R}^{2}+\mathrm{X}_{\mathrm{L}}^{2}\right)=100.197 \text { ohms } \\ & \mathrm{Y}=1 / \mathrm{Z}=9.98 \mathrm{X} 10^{-3} \mathrm{~S} \\ & \mathrm{I}=\mathrm{V} / \mathrm{Z}=2.295 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{R}}=\mathrm{I} \mathrm{R}=229.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=\mathrm{I} \mathrm{X} \\ & \mathrm{~L}=14.42 \mathrm{~V} \\ & \mathrm{~S}=\mathrm{VI}=527.85 \mathrm{VA} \\ & \text { Power factor }=\mathrm{R} / \mathrm{Z}=0.998 \text { lag } \\ & \mathrm{P}=\mathrm{VI} \operatorname{cose}=526.7 \mathrm{~W} \\ & \mathrm{Q}=\mathrm{V} \text { I sine }=\quad \mathrm{VAR} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 2 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 1 \\ & 1 \end{aligned}$	2	K3
6	In the given circuit, the total power delivered by the battery is 18 W . Calculate the value of unknown resistance $R$ and its current.   Total current $=\mathrm{P} / \mathrm{V}=18 / 12=1.5 \mathrm{~A}$   Total resistance $=\mathrm{V} / \mathrm{I}=12 / 1.5=8 \mathrm{ohms}$   Total resistance $=8$ parallel with $\mathrm{R}+4$ parallel with $16=8$   $8 \mathrm{R} /(8+\mathrm{R})+3.2=8 ; \mathrm{R}=12 \mathrm{ohms}$   I in 12 ohm resistor $=1.5 \times 8 /(8+12)=0.6 \mathrm{~A}$	2 2 4	2	K3


PART - C (20 Mark Questions with Key)								
S.No	Questions	Mark	COs	BTL				
UNIT-I - DC AND AC CIRCUIT FUNDAMENTALS								



E.G.S. PILLAY ENGINEERING COLLEGE<br>(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam - 611 002, Tamilnadu.

Rev. 0
COE/2017/QB

1	Determine the rms value, average value, form factor and peak factor for the   (i) Full rectified sine wave and   (ii) half rectified sine wave	20	2	K3
	Full rectified sine wave: rms value calculation average value calculation form factor calculation peak factor calculation	3 3 2 2		
	Half rectified sine wave: rms value calculation average value calculation form factor calculation peak factor calculation	3 2 2		
2	Calculate the total power and energy consumption of your house with suitable assumptions and also calculate the bimonthly electricity bill with cost of $2 \mathrm{Rs} / \mathrm{unit}$	20	2	K3
	List of loads with power rating and numbers ( with assumptions- min. of 5 loads)	5		
	Table of power and energy calculation	10		
	bimonthly electricity bill calculation	5		



	E.G.S. PILLAY ENGINEERING COLLEGE   (An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam - 611 002, Tamilnadu.	$\begin{gathered} \text { Rev. } 0 \\ \text { COE/2017/QB } \end{gathered}$

\begin{tabular}{|c|c|c|c|c|}
\hline \& Merit: only one watt meter is used Demerit: For unbalanced load single watt meter method doesn't give the correct three phase power value. \& 1
1 \& 1 \& K1 \\
\hline 10 \& List the merits of measuring three phase power using two wattmeter method. \& \& \& \\
\hline \& \begin{tabular}{l}
1)Only two wattmeter are sufficient to measure three phase power \\
2)Suitable for both balanced and unbalanced star and delta loads \\
3)Using two wattmeter readings, it is possible to find total power, power factor and reactive power of the load.
\end{tabular} \& 2 \& 1 \& K1 \\
\hline 11 \& Draw the three phase voltage waveform \& \& \& \\
\hline \&  \& 2 \& 1 \& K1 \\
\hline 12 \& Draw the phasor diagram for positive and negative sequence voltages.( DEC. 2017) \& \& \& \\
\hline \&  \& 1

1 \& 1 \& K1 <br>
\hline 13 \& Write the equations for three phase power and powerfactor measured using two wattmeter method. \& \& \& <br>

\hline \& $$
\begin{aligned}
& \text { Three phase power }=\mathrm{W} 1+\mathrm{W} 2 \\
& \text { Power factor }=\cos \varphi=\cos \left[\tan ^{-1}\left(\sqrt{3} \frac{W 1-W 2}{W 1+W 2}\right)\right]
\end{aligned}
$$ \& 1

1 \& 1 \& K1 <br>
\hline 14 \& Circuit diagram for three phase power measurement using single wattmeter method for balanced star connected load \& \& \& <br>
\hline \&  \& 2 \& 1 \& K1 <br>
\hline 15 \& What is meant by one line diagram? \& \& \& <br>
\hline \& One-line diagram or single-line diagram (SLD) is a simplified notation for representing a three-phase power system. Electrical elements such as circuit breakers, transformers, capacitors, bus bars, and conductors are shown by standardized schematic symbols. Instead of representing each of three phases with a separate line or terminal, only one conductor is represented. \& 2 \& 1 \& K1 <br>
\hline
\end{tabular}

	E.G.S. PILLAY ENGINEERING COLLEGE	
(An Autonomous Institution, Affiliated to Anna University, Chennai)	Rev.0	
Nagore Post, Nagapattinam -611002, Tamilnadu.		


PART - B (12 Mark Questions with Key)				
S.No	Questions	Mark	COs	BTL
1	Determine the line current, power factor, total power, reactive power and apparent power when a 3 phase 400 V supply is given to a balanced star connected load of impedance $(\mathbf{1 5}+\mathrm{j} 20)$ ohm in each branch.	12		
	$\begin{aligned} & \mathrm{Z}+\mathrm{I}_{\mathrm{ph}}+\mathrm{I}_{\mathrm{L}}+\mathrm{pf} \\ & \mathrm{P}+\mathrm{Q}+\mathrm{S} \end{aligned}$	$\begin{gathered} 2+1+1+2 \\ 2+2+2 \end{gathered}$		
	$\begin{array}{ll} \checkmark & \mathrm{Z}_{\mathrm{ph}}=\sqrt{ }\left(\mathrm{R}^{2}+\mathrm{X}_{\mathrm{L}}{ }^{2}\right)=25 \text { ohms } \\ \checkmark & \mathrm{V}_{\mathrm{L}}=400 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{ph}}=\mathrm{V}_{\mathrm{L}} / \sqrt{ } 3=230.95 \mathrm{~V} \\ \checkmark & \mathrm{I}_{\mathrm{ph}}=\mathrm{I}_{\mathrm{L}}=\mathrm{V}_{\mathrm{ph}} / \mathrm{Z}_{\mathrm{ph}}=9.24 \mathrm{~A} \\ \checkmark & \mathrm{Pf}=\mathrm{R} / \mathrm{Z}=0.6 \text { (lag) } \\ \checkmark & \mathrm{P}=\sqrt{ } 3 \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \theta=3840.88 \text { watts } \\ \checkmark & \mathrm{Q}=\sqrt{ } 3 \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \sin \theta=5121.18 \mathrm{VAR} \\ \checkmark & \mathrm{~S}=\sqrt{ } 3 \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \quad=6401.47 \mathrm{VA} \\ & \end{array}$		2	K3
2	Two watt meters are used to measure power in a three phase system and their readings are 600 W and 300 watts. Find the total three phase power, power factor and reactive power.	12		
	$\begin{aligned} & \hline \text { Power }+ \text { Power Factor + reactive power } \\ & \checkmark \text { Three phase power }=\mathrm{W} 1+\mathrm{W} 2=600+300=900 \mathrm{~W} \\ & \checkmark \text { Power factor }=\cos \varphi=\cos \left[\tan ^{-1}\left(\sqrt{3} \frac{W 1-W 2}{W 1+W 2}\right)\right]=0.866 \\ & \checkmark \text { Reactive power }=\sqrt{ } 3 *(\mathrm{~W} 1-\mathrm{W} 2)=519.6 \mathrm{VAR} \end{aligned}$	4+4+4	2	K3
3	Explain the single line diagram of a typical AC transmission and distribution system. (DEC. 2017)	12		
	Typical AC Power Supply System Scheme By: Engr Wasim Khan	4+8	3	K2


	E.G.S. PILLAY ENGINEERING COLLEGE   (An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam - 611 002, Tamilnadu.	$\begin{gathered} \text { Rev. } 0 \\ \text { COE/2017/QB } \end{gathered}$


4	i) Derive the relationship between line and phase voltages in a star connected system.   ii) A balanced star connected load of $3+\mathrm{j} 4 \mathrm{ohms}$ in each phase is connected to a 3 phase 400 V supply. Find phase and line currents. Also find total power consumed by the load.	$\begin{aligned} & 7 \\ & 5 \end{aligned}$	2	K3
	i) Circuit + phasor diagram + Derivation   ii) $\begin{aligned} & \mathrm{Z}+\mathrm{I}_{\mathrm{ph}}+\mathrm{I}_{\mathrm{L}}+\mathrm{pf}+\mathrm{P} \\ & \mathrm{Z}_{\mathrm{ph}}=\sqrt{ }\left(\mathrm{R}^{2}+\mathrm{X}_{\mathrm{L}}^{2}\right)=5 \text { ohms } \\ & \mathrm{V}_{\mathrm{L}}=400 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{ph}}=\mathrm{V}_{\mathrm{L}} / \sqrt{ } 3=230.95 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{ph}}=\mathrm{I}_{\mathrm{L}}=\mathrm{V}_{\mathrm{ph}} / \mathrm{Z}_{\mathrm{ph}}=46.19 \mathrm{~A} \\ & \mathrm{Pf}=\mathrm{R} / \mathrm{Z}=0.6 \quad(\mathrm{lag}) \\ & \mathrm{P}=\sqrt{ } 3 \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \theta=19200 \text { watts } \end{aligned}$	$\begin{aligned} & 2+2+3 \\ & 5 * 1=5 \end{aligned}$		
5	i) Derive the relationship between line and phase voltages in a delta connected system.   ii) A balanced delta connected load of $\mathbf{8 - j} \mathbf{~ o h m s}$ in each phase is connected to a 3 phase 230 V supply. Find phase and line currents. Also find total power consumed by the load.	$\begin{aligned} & 7 \\ & 5 \end{aligned}$		
	i) Circuit + phasor diagram + Derivation   ii) $\begin{aligned} & \mathrm{Z}+\mathrm{I}_{\mathrm{ph}}+\mathrm{I}_{\mathrm{L}}+\mathrm{pf}+\mathrm{P} \\ & \mathrm{Z}_{\mathrm{ph}}=\sqrt{ }\left(\mathrm{R}^{2}+\mathrm{X}_{\mathrm{c}}^{2}\right)=10 \mathrm{ohms} \\ & \mathrm{~V}_{\mathrm{L}}=230 \mathrm{~V}= \\ & \mathrm{I}_{\mathrm{ph}}=\mathrm{V}_{\mathrm{ph}} / \mathrm{Z}_{\mathrm{ph}}=23 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{L}}=\sqrt{3} \mathrm{I}_{\mathrm{ph}}=39.84 \mathrm{~A} \\ & \mathrm{Pf}=\mathrm{R} / \mathrm{Z}=0.8 \quad \text { lead }) \\ & \mathrm{P}=\sqrt{ } 3 \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \theta=12696.53 \text { watts } \end{aligned}$	$\begin{aligned} & 2+2+3 \\ & 5 * 1=5 \end{aligned}$	2	K3
6	Determine the line current, power factor, total power, reactive power and apparent power when a 3 phase 400 V 50 Hz supply is given to a balanced delta connected load consisting of $\mathbf{1 6} \mathbf{~ o h m s}$ resistor in series with 38.2 mH inductor in each branch.	12	2	K3
	$\begin{aligned} & \mathrm{Z}+\mathrm{I}_{\mathrm{ph}}+\mathrm{I}_{\mathrm{L}}+\mathrm{pf} \\ & \mathrm{P}+\mathrm{Q}+\mathrm{S} \\ & \hline \end{aligned}$	$\begin{gathered} 2+1+1+2 \\ 2+2+2 \end{gathered}$		
	$\checkmark$ $\mathrm{X}_{\mathrm{L}}=2 \pi \mathrm{fL}=12 \mathrm{ohms}$   $\checkmark$ $\mathrm{Z}_{\mathrm{ph}}=\sqrt{ }\left(\mathrm{R}^{2}+\mathrm{X}_{\mathrm{c}}^{2}\right)=20$ ohms   $\checkmark$ $\mathrm{V}_{\mathrm{L}}=400 \mathrm{~V}=\mathrm{V}_{\mathrm{ph}}$   $\checkmark$ $\mathrm{I}_{\mathrm{ph}}=\mathrm{V}_{\mathrm{ph}} / \mathrm{Z}_{\mathrm{ph}}=20 \mathrm{~A}$   $\checkmark$ $\mathrm{I}_{\mathrm{L}}=\sqrt{3} \mathrm{I}_{\mathrm{ph}}=34.64 \mathrm{~A}$   $\checkmark$ $\mathrm{Pf}=\mathrm{R} / \mathrm{Z}=0.8 \quad(\mathrm{lag})$   $\checkmark$ $\mathrm{P}=\sqrt{ } 3 \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \Theta=19200 \mathrm{watts}$   $\checkmark$ $\mathrm{Q}=\sqrt{3} \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \sin \Theta=14400 \mathrm{VAR}$   $\checkmark$ $\mathrm{S}=\sqrt{ } 3 \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \quad=24000 \mathrm{VA}$			


PART - C (20 Mark Questions with Key)				
S.No	Questions	Mark	COs	BTL
1	Show that three phase power can be measured using two single phase watt meters. Also derive expression for power factor in terms of wattmeter readings. (DEC. 2017)	20	1	K4
	Circuit + Phasor diagram + Derivation for power + power factor	$4+6+5+5$		


	E.G.S. PILLAY ENGINEERING COLLEGE   (An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam - 611 002, Tamilnadu.	$\begin{gathered} \text { Rev. } 0 \\ \text { COE/2017/QB } \end{gathered}$


	Three phase power $=\mathrm{W} 1+\mathrm{W} 2=\sqrt{3} \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \varphi$   Power factor $=\cos \phi=\cos \left[\tan ^{-1}\left(\sqrt{3} \frac{W 1-W 2}{W 1+W 2}\right)\right]$			
2	A balanced three phase load has an impedance of $7+j 7 \mathrm{ohms}$ in each phase. The load is fed with 3 phase 415 V supply. The phase sequence is RYB. Determine the line current, phase current, power factor, power, reactive volt-ampere and volt-ampere if the load is (i) star connected (ii) delta connected.   Star: $\mathrm{I}_{\mathrm{L}}+\mathrm{pf}+\mathrm{P}+\mathrm{Q}+\mathrm{S}$   Delta: $\mathrm{I}_{\mathrm{L}}+\mathrm{pf}+\mathrm{P}+\mathrm{Q}+\mathrm{S}$   Star connection $\begin{array}{ll} \checkmark & \mathrm{Z}_{\mathrm{ph}}=\sqrt{ }\left(\mathrm{R}^{2}+\mathrm{X}_{\mathrm{L}}{ }^{2}\right)=9.9 \text { ohms } \\ \checkmark & \mathrm{V}_{\mathrm{L}}=415 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{ph}}=\mathrm{V}_{\mathrm{L}} / \sqrt{ } 3=239.6 \mathrm{~V} \\ \checkmark & \mathrm{I}_{\mathrm{ph}}=\mathrm{I}_{\mathrm{L}}=\mathrm{V}_{\mathrm{ph}} / \mathrm{Z}_{\mathrm{ph}}=24.2 \mathrm{~A} \\ \checkmark & \mathrm{Pf}=\mathrm{R} / \mathrm{Z}=0.707 \quad(\mathrm{lag}) \\ \checkmark & \mathrm{P}=\sqrt{ } 3 \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \theta=12298 \text { watts } \\ \checkmark & \mathrm{Q}=\sqrt{ } 3 \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \sin \theta=12298 \mathrm{VAR} \\ \checkmark & \mathrm{~S}=\sqrt{ } 3 \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \quad=17394.5 \mathrm{VA} \end{array}$   Delta connection $\begin{array}{ll} \checkmark & \mathrm{Z}_{\mathrm{ph}}=\sqrt{ }\left(\mathrm{R}^{2}+\mathrm{X}_{\mathrm{L}}{ }^{2}\right)=9.9 \mathrm{ohms} \\ \checkmark & \mathrm{~V}_{\mathrm{L}}=415 \mathrm{~V}=\quad \mathrm{V}_{\mathrm{ph}} \\ \checkmark & \mathrm{I}_{\mathrm{ph}}=\mathrm{V}_{\mathrm{ph}} / \mathrm{Z}_{\mathrm{ph}}=41.92 \mathrm{~A} \\ \checkmark & \mathrm{I}_{\mathrm{L}}=\sqrt{ } 3 \mathrm{I}_{\mathrm{ph}}=72.6 \mathrm{~A} \\ \checkmark & \mathrm{Pf}=\mathrm{R} / \mathrm{Z}=0.707 \quad(\mathrm{lag}) \\ \checkmark & \mathrm{P}=\sqrt{ } 3 \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \Theta=36893.7 \quad \text { watts } \\ \checkmark & \mathrm{Q}=\sqrt{ } 3 \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \sin \theta=36893.7 \mathrm{VAR} \\ \checkmark & \mathrm{~S}=\sqrt{ } 3 \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \quad=52183.43 \mathrm{VA} \end{array}$	20      $5 * 2$   $5 * 2$	2	K3


UNIT III - ELECTRICAL MACHINES AND POWER PLANTS				
PART - A ( 2 Mark Questions With Key)				
S.No	Questions	Mark	COs	BTL
1	Define back emf. Also give the importance of back emf in DC motor. (DEC. 2017)		3	K1
	When a motor rotates, emf is induced in the armature conductors and this induced emf	2		



E.G.S. PILLAY ENGINEERING COLLEGE<br>(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam - 611 002, Tamilnadu.

Rev. 0
COE/2017/QB

	opposes the supply voltage. This induced emf is called back emf (or) counter emf. $\mathrm{E}_{\mathrm{b}}=\mathrm{P} \emptyset \mathrm{NZ} / 60 \mathrm{~A}$ Volts.   The presence of back emf makes the d.c. motor a self-regulating machine i.e., it makes the motor to draw as much armature current as is just sufficient to develop the torque required by the load.			
2	Why single phase induction motor is not a self-starting motor?			
	When a single phase supply is fed to the stator winding, it produces only an alternating flux i.e., one which alternates along one space axis only. Due to this, starting torque will be zero. Hence the motor does not rotate.	2	3	K2
3	Write the voltage equation of motor.			
	$\mathrm{V}=\mathrm{E}_{\mathrm{b}}+\mathrm{I}_{\mathrm{a}} \mathrm{R}_{\mathrm{a}} \quad$ where V -Applied voltage, $\mathrm{E}_{\mathrm{b}}-$ Back EMF, $\mathrm{I}_{\mathrm{a}}$-Armature current \& $\mathrm{R}_{\mathrm{a}}$-Armature resistance	2	3	K1
4	State Faraday's laws of electromagnetic induction.			
	First law: Whenever a current carrying conductor cuts the magnetic lines of force an EMF is induced in it.   Second law: The induced EMF is directly proportional to the rate of change of flux.	1   1	3	K1
5	What is the use of commutator?			
	A device is used in a dc generator to convert the alternating emf into unidirectional emf is called commutator.	2	3	K1
6	Classify DC generators.			
	1.Self excited generator      Short shunt - Cumulative \& differential compound Generators   2. Separately excited generator	1	3	K1
7	Whether Transformer work with DC supply? Justify the answer.			
	Transformer won't work with DC supply. It works on the principle of mutual induction. Hence it requires change of flux. But DC supply won't produces change in flux w.r.t time.	2	3	K1
8	Write the emf equation of a transformer.			
	$\mathrm{E}_{1}=4.44 \emptyset \mathrm{f} \mathrm{N}_{1}$ volts $\mathrm{E}_{2}=4.44 \emptyset \mathrm{f} \mathrm{N}_{2}$ volts   $\mathrm{E}_{1}$ - Induced emf in primary $\mathrm{E}_{2}-$ Induced emf in secondary   $\mathrm{f}-$ supply frequency $\phi$ - Maximum flux in core   $\mathrm{N}_{1}$ - no. of turns in primary $\mathrm{N}_{2}$ - no. of turns in secondary	1	3	K1
9	Sketch the circuit diagram for separately excited DC generator.			
	Armature current $\mathrm{I}_{a}$ = Load current $\mathrm{I}_{\mathrm{L}}$   $\mathrm{R}_{\mathrm{a}}=$ Resistance of the armature winding   Figure 4.10   Terminal voltage $V=E_{g}-I_{a} R_{a}-V_{\text {brush }}$   $\mathrm{V}_{\text {brush }}$ - voltage drop at the contacts of the brush.   Generally $V_{\text {brush }}$ is neglected because of very low value.   Generated emf $E_{a}=V+1_{a} R_{a}+V_{\text {brush }}$.   Electric power developed $=\mathrm{E}_{\mathrm{g}} \mathrm{I}_{\mathrm{a}}$   Power delivered to load $=V \mathrm{I}_{\mathrm{a}}$	2	3	K1
10	Define voltage transformation ratio of transformers. Also write the condition for			



E.G.S. PILLAY ENGINEERING COLLEGE<br>(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam - 611 002, Tamilnadu.

Rev. 0
COE/2017/QB

	step-up transformer.			
	$\mathrm{E}_{2} / \mathrm{E}_{1}=\mathrm{I}_{1} / \mathrm{I}_{2}=\mathrm{N}_{2} / \mathrm{N}_{1}=\mathrm{K}$   K - Transformation ratio,   $\mathrm{E}_{1}, \mathrm{E}_{2}$ - EMF induced in Primary \& Secondary windings   $\mathrm{I}_{1}, \mathrm{I}_{2}$ - Current in Primary \& Secondary windings   $\mathrm{N}_{1}, \mathrm{~N}_{2}-$ no. of turns in Primary \& Secondary windings   In step up transformer, no. of turns in primary winding is less than the no. of turns in secondary winding. Or $E_{2}>E_{1}$	1 1	3	K1
11	What are the various losses that must be present in a transformer? Write the condition for maximum efficiency of a transformer.			
	Iron loss and copper loss Condition for maximum efficiency: Iron loss = copper loss	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	3	K1
12	State Fleming's Right hand rule.			
	If three fingers of right hand, namely thumb, index finger and middle finger are outstretched so that everyone of them is at right angles with the remaining two, and the index finger is made to point in the direction of lines of flux, thumb in the direction of the relative motion of the conductor and the middle finger gives the direction of the induced emf in the conductor.	2	3	K1
13	List out the various conventional and non-conventional power plants.			
	Types of conventional power plant:   1. Hydro power plant 2. Steam power plant   3. Nuclear power plant 4. Gas turbine power plant   Types of non-conventional power plant:   1. Solar power plant 2. Wind power plant   3. Geothermal power plant   4. Tidal power plant 5. Wave power plant   6.OTEC power plant	1   1	3	K1
14	What is a surge tank?		3	K1
	A surge tank is a small reservoir in which the water level rises or falls to reduce the pressure swings during opening and closing of inlet valve. The surge tank is not required for run off plants and medium head plants.	2		
15	List the factors to be considered while choosing a site for steam power station.			
	1.Supply of fuel 2. Distance from populated area 3.Transportation facilities 4.Cost and type of land $\quad$ 5.Nearness to load centers $\quad 6$. Availability of water	2	3	K1
PART - B (12 Mark Questions with Key)				
S.No	Questions	Mark	COs	BTL
1	Explain the working principle of DC generator with necessary diagrams. Also derive an expression for the EMF generated.	12	3	K2
	Working principle	6		
	EMF equation	6		
2	Explain the operation of single phase transformer with EMF equation.	12	3	K2
	Working	6		
	EMF equation	6		
3	Draw the layout of nuclear power plant and explain the function of each block in detail. (DEC. 2017)	12	3	K2
	Layout   Details of block	$\begin{aligned} & \hline 4 \\ & 8 \\ & \hline \end{aligned}$		
4	Explain the working of any one type of single phase induction motor with a neat diagram and speed - torque characteristics. (DEC. 2017)	12	3	K2
	Circuit Operation	$4$		


| E.G.S. PILLAY ENGINEERING COLLEGE |  |
| :---: | :---: | :---: |
| Rev. 0 |  |


	speed - torque characteristics	4		
5	Draw the layout of thermal power plant and explain the function of each block in detail. (DEC. 2017)	12	3	K2
	Layout   Details of block	4 8		
6	Draw the layout of hydroelectric power plant and explain the function of each block in detail.	12	3	K2
	Layout Details of block	4 8		


PART - C (20 Mark Questions with Key)				
S.No	Questions	Mark	COs	BTL
1	(i) A 25 KVA transformer has 500 turns on the primary and 50 turns on the secondary winding. The primary is connected to $3000 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Find the full load primary and secondary current, the secondary emf and maximum flux in the core. Neglect leakage drops and no load primary current. (DEC. 2017)   (ii) The number of primary and secondary turns of an ideal transformer is $\mathbf{1 5 0}$ and 300 respectively. The transformer is connected to a $220 \mathrm{~V}, 50 \mathrm{~Hz}$ source. Determine i) turns ratio ii) mutual flux in core   (DEC. 2017)	12 8	3	K3
	$\begin{aligned} & \text { (i) Primary current, secondary current, secondary emf, maximum flux } \\ & \mathrm{KVA}=25 \\ & \mathrm{f}=50 \mathrm{~Hz} \\ & \mathrm{E}_{1}=4.44 \mathrm{f} \emptyset \mathrm{~N}_{1} \\ & \mathrm{E}_{2}=4.44 \mathrm{f} \emptyset \mathrm{~N}_{2}=300 \mathrm{~V} \text { turns } \quad \mathrm{N}_{2}=50 \text { turns } \\ & \mathrm{I}_{2}=3000 \mathrm{VVA} \\ & \hline 1000 / \mathrm{E}_{2}=83.33 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{gathered} (4 * 3) \\ =12 \end{gathered}$		
	(ii) Turns ratio and mutual flux   a. $\quad \mathrm{N}_{1}=150$ turns $\mathrm{N}_{2}=300$ turns $\mathrm{E}_{1}=220 \mathrm{~V}$ $\mathrm{f}=50 \mathrm{~Hz}$   b. $\mathrm{K}=\mathrm{N}_{2} / \mathrm{N}_{1}=2 \quad \mathrm{E}_{1}=4.44 \mathrm{f} \emptyset \mathrm{N}_{1} \quad \emptyset=6.61 \mathrm{mwb}$	$\begin{gathered} (4 * 2) \\ =8 \end{gathered}$		
2	(i) A 4 pole wave wound generator has 40 slots and 10 conductors placed per slot. The flux per pole is 0.02 webers. Calculate the generated emf when the generator is driven at 1200 rpm.   (ii) A DC motor connected to 460 V supply has an armature resistance of 0.15 ohms . Calculate (i) the value of back emf when armature current is 120 A and (ii) the value of armature current when the back emf is 471 V .	10 10	3	K3
	(i) $\mathrm{E}_{\mathrm{g}}$      $\mathrm{P}=4$ No of conductors $=$ no of slots X no of conductors    per slot $=400=\mathrm{Z}$     $\emptyset=0.02 \mathrm{wb}$ N 1200 rpm    $\mathrm{E}_{\mathrm{g}}=\mathrm{P} \emptyset \mathrm{NZ} / 60 \mathrm{~A}$ $=160 \mathrm{~V}$	10		
	(ii) $\mathrm{E}_{\mathrm{b}} \& \mathrm{I}_{\mathrm{a}}$   V-Applied voltage $=460 \mathrm{~V} \quad \mathrm{~Eb}-$ Back EMF Ra-Armature resistance $=0.15 \mathrm{ohms}$   (i) $\mathrm{Eb}=$ ?   Ia Armature current $=120 \mathrm{~A}$ $\mathrm{V}=\mathrm{Eb}+\mathrm{Ia} \mathrm{Ra} \quad \mathrm{~Eb}=\mathrm{V}-\mathrm{Ia} \mathrm{Ra}=442 \mathrm{~V}$   (ii) $\begin{aligned} & \mathrm{Ia}=? \quad \mathrm{~Eb}=471 \mathrm{~V} \\ & \mathrm{Ia}=(\mathrm{V}-\mathrm{Eb}) / \mathrm{Ra}=-73.33 \mathrm{~A} \end{aligned}$	$\begin{gathered} 5+5= \\ 10 \end{gathered}$		


| E.G.S. PILLAY ENGINEERING COLLEGE |  |
| :---: | :---: | :---: |
| Rev. 0 |  |





	E.G.S. PILLAY ENGINEERING COLLEGE   (An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam - 611 002, Tamilnadu.	$\begin{gathered} \text { Rev. } 0 \\ \text { COE/2017/QB } \end{gathered}$


8	What is an amplifier?	2	5	K2
	An amplifier is a circuit used to increase the magnitude of the input current or voltage at the output by means of energy drawn from an external source.			
9	Define Oscillator.	2	5	K2
	An oscillator is a circuit which produces a continuous, repeated, alternating waveform without any input. Oscillators basically convert unidirectional current flow into oscillations.			
10	What are the types of oscillator?	2	5	K2
	Sinusoidal and non-sinusoidal oscillators   RC oscillators: Wien Bridge \& Phase-Shift oscillators   LC oscillators: Hartley \& Colpitts oscillators   Unijunction / relaxation oscillators			
11	What are the applications of LVDT?	2	5	K2
	1. LVDT is used to measure displacement ranging from millimeter to centimeter. 2. Acting as a secondary transducer. 3. LVDT can be used as a device to measure force, weight and pressure.			
12	What is Resistance temperature detector?	2	5	K2
	Resistance Temperature Detectors - are temperature sensors that contain a resistor that changes resistance value as its temperature changes. ... Most RTD elements consist of a length of fine coiled wire wrapped around a ceramic or glass core.			
13	Define transistor biasing?	2	5	K2
	The proper flow of zero signal dc collector current and the maintenance of proper collector emitter voltage during the passage of signal is known as transistor biasing.			
14	List the applications of BJT.	2	5	K2
	1. Act as a switch 2. Amplifier			
15	What are the disadvantages of half wave rectifier?	2	5	K2
	1. Low rectification efficiency 2. Low TUF 3. High ripple factor			
PART - B (12 Mark Questions with Key)				
S.No	Questions	Mark	COs	BTL
1	Explain the construction, operation and V-I characteristics of PN junction diode.	12	5	K2
	PN junction diode construction	4		
	operation	4		
	V-I characteristics	4		


	E.G.S. PILLAY ENGINEERING COLLEGE   (An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam - 611 002, Tamilnadu.	$\begin{gathered} \text { Rev. } 0 \\ \text { COE/2017/QB } \end{gathered}$


2	Explain the construction, operation and V-I characteristics of zener diode. (DEC. 2017)	12	5	K2
	Zener diode construction	4		
	operation	4		
	V-I characteristics	4		
3	Explain the operation of full wave bridge rectifier with neat circuit diagram and waveforms. Also list the advantages. (DEC. 2017)	12	5	K2
	Full wave bridge rectifier circuit diagram	3		
	operation	3		
	waveforms	3		
	advantages	3		
4	Explain the operation of half wave rectifier with neat circuit diagram and waveforms. Also list the features. (DEC. 2017)	12	5	K2
	Half wave rectifier circuit diagram	3		
	HWR operation	3		
	waveforms	3		
	Features of HWR	3		
5	Describe in detail about the working principle and operation of linear variable differential transformer (LVDT).	12	5	K2
	LVDT construction diagram, working principle	4		
	Characteristics/graph	2		
	Advantages, disadvantages	4		
	Applications	2		
6	Describe in detail about the working principle and operation of resistance temperature detector (RTD).	12	5	K2
	RTD construction diagram, working principle	4		
	Characteristics/graph	2		
	Advantages, disadvantages	4		
	Applications	2		
7	Explain the input and output characteristics of common base (CB) configuration.	12		
	Circuit   Operation   Input characteristics   Output characteristics	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	5	K2
8	Explain the input and output characteristics of common emitter (CE) configuration.	12		
	Circuit   Operation   Input characteristics   Output characteristics	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & \hline \end{aligned}$	5	K2
9	Explain the input and output characteristics of common collector (CC) configuration. (DEC. 2017)	12		
	Circuit   Operation   Input characteristics   Output characteristics	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	5	K2
10	Compare the three different transistor configurations in detail.	12	5	K2
	Any 6 points	6x2		


PART - C (20 Mark Questions with Key)								
S.No	Questions	Mark	COs	BTL				


| E.G.S. PILLAY ENGINEERING COLLEGE |  |
| :---: | :---: | :---: |
| (An Autonomous Institution, Affiliated to Anna University, Chennai) <br> Nagore Post, Nagapattinam - 611 002, Tamilnadu. | Rev. 0 <br> COE/2017/QB |



	E.G.S. PILLAY ENGINEERING COLLEGE	
(An Autonomous Institution, Affiliated to Anna University, Chennai)	Rev.0	
Nagore Post, Nagapattinam -611002, Tamilnadu.		


4				


| E.G.S. PILLAY ENGINEERING COLLEGE |  |
| :---: | :---: | :---: |
| (An Autonomous Institution, Affiliated to Anna University, Chennai) | Rev. 0 |
| Nagore Post, Nagapattinam -611 002, Tamilnadu. |  |


	carrier signal, with a modulating signal that typically contains information to be transmitted.			
11	Define pulse width modulation.	2	6	K2
	In pulse width modulation, the width of the carrier pulse is varied accordance to message signal amplitude.			
12	Give the applications of fibre optic communication system.	2	6	K2
	Applications   1. Long distance telephone system.   2. Interconnect computers in networks within a large building.   3. Carry control signals in airplanes and ships.   4. Secure communications systems at military bases.   5. Shipboard and Aircraft communications.   6. Plant and traffic control.   7. Data acquisition and control signal communications in industrial process control systems.   8. Nuclear plant instrumentation.			
13	List advantages and disadvantages of Fibre-optic communication.	2	6	K2
	Advantages and Disadvantages of Fiber Optics   - Advantages:   - Huge bandwidth:   - Ethernet cable: 1 Gbps   , Fiber optics: 250Gbps   * Immunity to electrical noise   , No crosstalk   - Reduced size and weight cables   , Resistance to corrosion and temperature variations.   , Disadvantages:   , Expensive in comparison with conventional electrical cables.   - Expensive and difficult installation.			
14	What is microwave? (DEC. 2017) Give the advantages of Microwave communication.	2	6	K2
	Microwave is an electromagnetic wave with a wavelength in the range $0.001-0.3 \mathrm{~m}$, shorter than that of a normal radio wave but longer than those of infrared radiation. Microwaves are used in radar, in communications, and for heating in microwave ovens and in various industrial processes.   1. Reliability and high quality. 2 . Noise immunity for data, voice or video signals.   3. Capable of using frequency bands above 10 GHz .   4. High RF spectrum efficiency.   5. Ability to accommodate increased telephone traffic, economically and conveniently.			
15	Compare AM and FM	2	6	K2
	Amplitude Modulation Frequency Modulation			


	E.G.S. PILLAY ENGINEERING COLLEGE   (An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam - 611 002, Tamilnadu.	$\begin{gathered} \text { Rev. } 0 \\ \text { COE/2017/QB } \end{gathered}$


	1.The amplitude of AM signal is Varies depending on modulating signal.   2. Transmitters are simple and cheap.   3. Bandwidth ( BW ) is very small.   4. Area of reception is large.   5. Noise cannot be easily minimized.	sive.		
PART - B (12 Mark Questions with Key)				
S.No	Questions	Mark	COs	BTL
1	Why NAND and NOR gates are known as Universal gates? Explain in detail.	12	4	K3
	Reason for Universal gates	2		
	Realization of OR, AND \& NOT gates using NAND gate	5		
	Realization of OR, AND \& NOT gates using NOR gate	5		
2	Explain the operation of microwave communication in detail.	12	6	K2
	Microwave communication-block diagram	6		
	Explanation, merits, demerits	6		
3	Describe about the operation of satellite communication using block diagram.	12	6	K2
	Satellite communication-block diagram	6		
	Explanation, merits, demerits	6		
4	Describe about fiber optic communication in detail. (DEC. 2017)	12	6	K2
	Fiber optic communication-block diagram	6		
	Explanation, merits, demerits	6		
5	Enumerate about cellular mobile communication in detail. (DEC. 2017)	12	6	K2
	Cellular mobile communication-block diagram	6		
	Explanation, merits, demerits	6		
6	Write short notes on (i) Amplitude modulation and (ii) frequency modulation	12	6	K2
	Amplitude modulation -block diagram, working, explanation	6		
	frequency modulation- block diagram, working, explanation	6		
7	Write short notes on (i) PAM (ii) PWM and (iii) PPM	12	6	K2
	PAM-block diagram, working, explanation	4		
	PWM-block diagram, working, explanation	4		
	PPM-block diagram, working, explanation	4		
PART - C (20 Mark Questions with Key)				
S.No	Questions	Mark	COs	BTL
1	Explain the operation of the following logic gates with necessary truth table   (i) AND (ii) OR (iii) NOT (iv) NAND (v) NOR (vi) EX-OR (vii) EX-NOR	20	4	K2
	(i) AND (ii) OR (iii) NOT logic gates- symbol, truth table, explanation	$3 \times 2=6$		
	(iv) NAND (v) NOR- symbol, truth table, explanation	$2 \times 3=6$		
	(vi) EX-OR (vii) EX-NOR- symbol, truth table, explanation	$2 \times 4=8$		
2	(i) Reduce the following Boolean expressions and implement using logic gates   (a) $\mathbf{A B}+\mathbf{A}(\mathbf{B}+\mathbf{C})+\mathbf{B}(\mathbf{B}+\mathbf{C})$   (b) $\bar{A} B C+A \bar{B} \bar{C}+\bar{A} \bar{B} \bar{C}+A \bar{B} C+A B C$   (ii) Reduce the following expressions using De-Morgan's theorem and implement using logic gates   (a)	10 10	4	K3


	E.G.S. PILLAY ENGINEERING COLLEGE   (An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam - 611 002, Tamilnadu.	$\begin{gathered} \text { Rev. } 0 \\ \text { COE/2017/QB } \end{gathered}$



