| E.G.S. PILLAY ENGINEERING COLLEGE | |
| :---: | :---: | :---: |
| Rev. 0 | |

1702EE202 ELECTRIC CIRCUIT ANALYSIS

Acaden	mic Year :	2017-2018	Question Bank	Programme		B.E - EE		
Year /	Semester	I / II		Course Cood	nator:	$\begin{aligned} & \hline \text { Dr.T.SUI } \\ & \text { PADMA } \end{aligned}$	$\begin{aligned} & \text { H } \\ & \text { HAN } \end{aligned}$	
Course Objectives			Course Outcomes					
1. To know about the basics of electric circuits 2. To impart knowledge on solving circuits using network theorems 3. To introduce the phenomenon of resonance and coupled circuits 4. To determine the transient response of circuits 5. To analyze three phase circuits				On the successful completion of the course, students will be able to CO1: Explain the basic laws, theorems and concepts of DC / AC (1 phase and 3 phase) circuits, Resonant and coupled circuits. CO : Solve the problems in network topology and to identify the dual of the network. CO3: Solve the problems in resonance circuits, coupled circuits and two port networks. CO4: Analyze the transient behavior of first and second order circuits using Laplace transforms. CO5: Apply Ohms law, Kirchhoff's laws, mesh \& nodal methods and network theorems to solve circuit problems. CO6: Analyze three phase 3 wire/ 4wire balanced/ unbalanced star/delta connected loads.				
PART - A (2 Mark Questions With Key)								
UNIT I - DC CIRCUITS								
1	Elements that supply energy to the network are called as active elements/components. E.g.: Voltage or current source, battery, generator Elements that take energy from the sources and either convert it to another form or store it in electric or magnetic field are called passive elements. E.g.: Resistors, inductors, and capacitors.				1	1	K1	
2	Differentiate mesh and loop							
	MESH		LOOP		11	1	K2	
	Mesh is a closed path or fundamental loop which cannot be further divides into other loop		Loop is a closed path and may consists of one or many meshes					
3	Differentiate circuit and network							
	Circuit has active element with closed path		Network may or may not has active element with closed path			1	K2	
4	Meeting point of two or more elements is known as node or point or junction. If more than two elements meet at a node then it is called as principal node				1 1	1	K1	
5	Find the total resistance across the battery of the given circuit.							

| E.G.S. PILLAY ENGINEERING COLLEGE | |
| :---: | :---: | :---: |
| Rev. 0 | |
| (An Autonomous Institution, Affiliated to Anna University, Chennai) | COE/2017/QB |

| E.G.S. PILLAY ENGINEERING COLLEGE | |
| :---: | :---: | :---: |
| Rev. 0 | |
| (An Autonomous Institution, Affiliated to Anna University, Chennai) | COE/2017/QB |

\begin{tabular}{|c|c|c|c|c|}
\hline \& two points is the algebraic sum of the currents or the voltages that would have been produced by each source taken separately with all other sources removed". \& \& \& \\
\hline 11 \& State reciprocity theorem \& \& \& \\
\hline \& Reciprocity theorem states that "In a linear, bilateral network, a voltage source V volts in a branch gives rise to a current I in another branch. If V is applied in the second branch, the current in the first branch will be I. This ratio \(\frac{V}{I}\) is called as the transfer impedance or resistance. \& 2 \& 1 \& K1 \\
\hline 12 \& State maximum power transfer theorem \& \& \& \\
\hline \& The theorem states "Maximum power will be transferred from a voltage source to a load, when the load resistance is equal to the internal resistance of the source. \& 2 \& 1 \& K1 \\
\hline \multirow[t]{2}{*}{13} \& Determine the Thevenin's resistance across 'AB' for the circuit shown below. \& \& \& \\
\hline \& \[
\begin{aligned}
\mathrm{R}_{\mathrm{th}}=10 \| 5 \& =(10 \times 5) /(10+5) \\
\& =3.33 \Omega
\end{aligned}
\] \& 1 \& 5 \& K3 \\
\hline 14 \& Give the applications of (i) maximum power transfer theorem and (ii) Thevenin's theorem. \& \& \& \\
\hline \& (i) maximum power transfer theorem is used in electronic and communication circuits, impedance matching in power amplifiers, transmission lines, and antenna propagation and in microwave transmission \& 1 \& \multirow[b]{2}{*}{1} \& \multirow[b]{2}{*}{K2} \\
\hline \& (ii) Thevenin's theorem is used in electronic circuits represented by the controlled sources, it is useful when it is desired to know the effect of the response in the network \& 1 \& \& \\
\hline 15 \& What is the expression of load current w.r.to Thevenin's circuit and Norton's circuit? \& \& \& \\
\hline \& \begin{tabular}{l}
In Thevenin's equivalent circuit, the load current is expressed as,
\[
I_{L}=\frac{V_{O C}}{R_{t h}+R_{L}}
\] \\
(ii) In Norton's equivalent circuit, the load current is expressed as,
\[
I_{L}=\frac{I_{S C} \times R_{t h}}{R_{t h}+R_{L}}
\]
\end{tabular} \& 1

1 \& 5 \& K2 \\
\hline
\end{tabular}

	E.G.S. PILLAY ENGINEERING COLLEGE (An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam - 611 002, Tamilnadu.	$\begin{gathered} \text { Rev. } 0 \\ \text { COE/2017/QB } \end{gathered}$

PART - B (12 Mark Questions with Key)

PART - B (12 Mark Questions with Key)				
S.No	Questions (for all problems step marks can be given accordingly)	Mark	COs	BTL
1	Find branch currents using mesh method	12		
	Using mesh current method,(method of inspection) Three meshes are ABCDEA,BCFB, DCFD The matrices can be formed as			
	$\begin{array}{cccc} \hline 18 & -12 & -1 / 1 \\ -12 & 16 & -4 I 2 \\ -1 & -4 & 13 I 3 \end{array}=\begin{gathered} 23 \\ 0 \\ 0 \end{gathered}$	2		
	Determinant value, $\Delta=1472$	2	5	K3
	$\Delta \mathrm{I}_{1}=4416$	2		
	$\Delta \mathrm{I}_{2}=3680$	2		
	$\Delta \mathrm{I}_{3}=1472$			
	$\mathrm{I}_{1}=3 \mathrm{~A}$			
	$\mathrm{I}_{2}=2.5 \mathrm{~A}$	2		
	Answers: Current through 2Ω resistor $=\mathrm{I}_{1}=3 \mathrm{~A}$ Current through 3Ω resistor $=\mathrm{I}_{1}=3 \mathrm{~A}$ Current through 1Ω resistor $=I_{1-} I_{3}=2 \mathrm{~A}$ Current through 12Ω resistor $=\mathrm{I}_{1}-\mathrm{I}_{2}=0.5 \mathrm{~A}$ Current through 4Ω resistor $=\mathrm{I}_{2}-\mathrm{I}_{3}=1.5 \mathrm{~A}$ Current through 8Ω resistor $=I_{3}=1 \mathrm{~A}$	2		

	E.G.S. PILLAY ENGINEERING COLLEGE (An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam - 611 002, Tamilnadu.	$\begin{gathered} \text { Rev. } 0 \\ \text { COE/2017/QB } \end{gathered}$

2	Find the Node voltages in the given circuit. Convert all voltage sources into equivalent current sources No. of equations $=3-1=2$ The matrices can be formed as $\begin{aligned} & \frac{1}{0.25}+\frac{1}{1}+\frac{1}{0.5} \\ & \frac{-1}{0.5} \end{aligned} \frac{\frac{-1}{0.5}}{0.5}+\frac{1}{1}+\frac{1}{0.2} \quad V 2=\begin{aligned} & 1000 \\ & 1100 \end{aligned} \quad \begin{aligned} & \\ & \Delta=52 \\ & \Delta \mathrm{~V}_{1}=10200 \\ & \Delta \mathrm{~V}_{2}=9700 \\ & \mathrm{~V} 1=196.154 \mathrm{~V} \\ & \mathrm{~V} 1=186.538 \mathrm{~V} \end{aligned}$	12 4	5	K3
3	Calculate current through $\mathbf{5 \Omega}$ resistor using Thevenin's theorem.	12	5	K3

	E.G.S. PILLAY ENGINEERING COLLEGE (An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam - 611 002, Tamilnadu.	$\begin{gathered} \text { Rev. } 0 \\ \text { COE/2017/QB } \end{gathered}$

(a) To find Voc:

(b) To find R_{th} :

	E.G.S. PILLAY ENGINEERING COLLEGE (An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam - 611 002, Tamilnadu.	$\begin{gathered} \text { Rev. } 0 \\ \text { COE/2017/QB } \end{gathered}$

(ans Ω

$\underset{\mathrm{Isc}=\mathrm{I}_{\mathrm{N}}=\mathrm{I}_{1}-\mathrm{I}_{2}}{\text { To find } \mathrm{I}_{\mathrm{N}}}$:

The matrices can be formed as

5.6	0	-4	$I 1$	0
0	5	-2	$I 2=$	0
-4	-2	6.5	$I 3$	12
$\mathrm{I}_{\mathrm{N}}=1.33 \mathrm{~A}$				

(b) To find R_{N} :

$\mathrm{R}_{\mathrm{N}}=3.08 \Omega$
(c) To find I_{L} :
$\mathrm{I}_{\mathrm{L}}=0.577 \mathrm{~A}$

$I_{\text {Sc }}=1.33 \mathrm{~A}$

$$
I_{L}=I_{S<} \times \frac{R_{N}}{R_{N}+R_{L}}
$$

	E.G.S. PILLAY ENGINEERING COLLEGE (An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam - 611 002, Tamilnadu.	$\begin{gathered} \text { Rev. } 0 \\ \text { COE/2017/QB } \end{gathered}$

\begin{tabular}{|c|c|c|c|c|}
\hline 5 \& Obtain the value of resistor ' \(R\) ' for maximum power transferred to it. Also find maximum power. \& 12 \& \& \\
\hline \& \begin{tabular}{l}
(i) To find Voc:
\[
\begin{aligned}
\& I 1=\frac{100}{15+10}=4 \mathrm{~A} \\
\& V o c=V 10 \Omega=4 \mathrm{X} 10=40 \mathrm{~V}
\end{aligned}
\] \\
(ii) To find Rth: \\
To find Ren:
\[
\text { Rth }=10 \| 15+20=26 \Omega
\]
\[
P_{4}=\frac{10 \times 15}{10+15}+20
\] \\
(iii) To find \(R\) and Pmax: \\
for max. power transfer, \(\mathrm{R}=\mathrm{R}_{\text {th }}=26 \Omega\)
\[
I_{L}=\frac{40}{26+26}=0.7692 A
\] \\
\(\mathrm{Pmax}=\mathrm{I}_{\mathrm{L}}{ }^{2} \times \mathrm{R}_{\mathrm{L}}=15.384 \mathrm{~W}\)
\end{tabular} \& 4

4
4

4
4 \& 5 \& K3

\hline
\end{tabular}

	E.G.S. PILLAY ENGINEERING COLLEGE (An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam - 611 002, Tamilnadu.	$\begin{gathered} \text { Rev. } 0 \\ \text { COE/2017/QB } \end{gathered}$

6

	E.G.S. PILLAY ENGINEERING COLLEGE (An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam - 611 002, Tamilnadu.	$\begin{gathered} \text { Rev. } 0 \\ \text { COE/2017/QB } \end{gathered}$

		6 6		
2	Obtain the current through 15Ω and power delivered to it using mesh method.	20 Figure with mesh currents (4) 4 4 4 4 2 2	5	K3

