

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

1702EE202 ELECTRIC CIRCUIT ANALYSIS									
Acade	mic Year :	2017-2018			Programme		B.E – EEE		
Year /	Semester :	I / II	Question Bank Course Coord		Course Coor	dinator:	Dr.T.SURI	ESH	
						PADMAN	ABHAN		
	Co	ourse Objectives			Course C	Outcomes			
1. To k	now about the	e basics of electri	c circuits	On the successful	completion of t	he course,	students will	l be able to	
2. To i	mpart knowle	dge on solving ci	rcuits using	CO1: Explain the	basic laws, theo	orems and	concepts of I	DC / AC (1	
netw	ork theorems			phase and 3	phase) circuits,	Resonant	and coupled	circuits.	
3. To i	ntroduce the p	phenomenon of re	sonance and	CO2: Solve the pr	oblems in netwo	ork topology and to identify the			
cou	pled circuits			dual of the i	network.				
4. To c	letermine the	transient response	e of circuits	CO3: Solve the pr	oblems in reson	ance circu	its, coupled	circuits	
5. Io a	inalyze three p	phase circuits		and two por	t networks.				
				CO4: Analyze the	transient benav	10r of first	and second	order	
				CO5: Apply Ohm	s low Kirchhof	forms.	ash & nodal	methods	
				and networl	theorems to so	lve circuit	problems	methous	
				CO6: Analyze thr	ee nhase 3 wire	Awire hal	anced/unbal	anced	
				star/delta co	onnected loads.	-wite bai		anceu	
			PART – A	(2 Mark Questions Wi	th Key)				
S.No			Question	IS	•	Mark	COs	BTL	
UNIT	I – DC CIRC	CUITS							
	1						1	r	
1	Define Acti	ve and passive co	omponents						
	Elements	that supply en	ergy to the	network are calle	d as active		1	K1	
	elements/co	mponents.	1			1			
	E.g.: Voltag	e or current sourc	e, battery, gene	rator					
	Elements th	at take energy fro	m the sources	and either convert it to	another form				
	or store it in	electric or magne	tic field are cal	led passive elements	unother form				
	E.g.: Resisto	ors. inductors. and	capacitors.						
2	Differentiat	te mesh and loon	<u>F</u>						
		MESH		LOOP					
	Mesh is a cl	osed path or fund	amental Lo	op is a closed path and	may consists	1		K2	
	loop which o	cannot be further	divides of	one or many meshes		1	1		
	into other lo	op		·					
	All meshes a	are loops	Bu	it all loops are not mesh	nes	1			
3	Differentia	te circuit and net	work						
	CIF	RCUIT		NETWORK		1			
	Circuit has a	active element wit	th closed Ne	etwork may or may not	has active	1	1	K)	
	path		ele	ement with closed path		1	1	ΓL Γ	
	All circuits a	are networks	Bu	it all networks are not c	circuits	1			
4	Define node	e and principal n	ode						
Meeting point of two or more elements is known as node or point or junction. 1									
							1	K1	
	If more than	two elements me	et at a node the	n it is called as princip	al node	1			
5	Find the tot	tal resistance acr	oss the batterv	of the given circuit				1	

E.G.S. PILLAY ENGINEERING COLLEGE (An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

	$\frac{12 a 20a 7a 44 8a}{20a 12a}$	1		
	40 ohms in parallel with 10 ohms = 8 ohms Total resistance = 8 ohms	1	5	K3
6	State Kirchhoff's laws.			
	 Kirchhoff's current law At a junction, the sum of currents flowing towards the junction is equal to the sum of the currents flowing away from it. Kirchhoff's voltage law In a closed circuit, the sum of the potential drops are equal to the sum of the potential rises.	1	1	K1
7	Obtain the currents I_1 and I_2 for the network shown in the figure below			
	At node a	1		
	At node a $5 + 8 + 1 = 20 \rightarrow 1 = 17 \text{ A}$	1		
	3+6+1 = 50 = 71 = 17 A		5	K3
	At node c $L_{r} = 8 + 6 = 14$ A	1		
8	$12 - 0 \pm 0 - 14 \Lambda$ Stata Thevenin's theorem	1		
0	Thevenin's theorem states that "Any two terminal linear network having a number of voltage, current sources and resistances can be replaced by a simple equivalent circuit consisting of a single voltage source in series with a resistance, where the value of the voltage source is equal to the open circuit voltage across the two terminals of the network and resistance measured between the terminals with all the energy sources are replaced by their internal resistances.	2	1	K1
9	State INOFIOR'S INCOREM			
	of voltage, current sources and resistances can be replaced by a simple equivalent circuit consisting of a single current source in parallel with a resistance, where the value of the current is the short circuit current between two terminals of the network and the resistance is the equivalent resistance measured between the terminals of the network with all the energy sources replaced by their internal resistance.	2	1	K1
10	State superposition theorem			
	Superposition theorem states "In a linear circuit containing more than one source, the current that flows at any point or the voltage that exists between any	2	1	K1

E.G.S. PILLAY ENGINEERING COLLEGE (An Autonomous Institution, Affiliated to Anna University, Chennai)

Nagore Post, Nagapattinam – 611 002, Tamilnadu.

	two points is the algebraic sum of the currents or the voltages that would have			
11	been produced by each source taken separately with all other sources removed".			
11	State reciprocity theorem			
	volts in a branch gives rise to a current I in another branch. If V is applied in the			
	Volts in a branch gives lise to a current i in another branch. If v is appred in the	2	1	17.1
	second branch, the current in the first branch will be I. This ratio $\frac{v}{I}$ is called as	2	1	K1
	the transfer impedance or resistance.			
12	State maximum power transfer theorem			
	The theorem states "Maximum power will be transferred from a voltage source to	2	1	V 1
	a load, when the load resistance is equal to the internal resistance of the source.	Δ	1	KI
13	Determine the Thevenin's resistance across 'AB' for the circuit shown			
	below. 10 5Ω			
	$R_{tb} = 10 \parallel 5 = (10 \times 5) / (10 + 5)$	1		
	$= 3.33 \Omega$	1	5	K3
14	Give the applications of (i) maximum power transfer theorem and (ii)			
	Thevenin's theorem.			
	(i) maximum power transfer theorem is used in electronic and communication			
	circuits, impedance matching in power amplifiers, transmission lines, and antenna	1		
	propagation and in microwave transmission		1	к2
	(ii) Thevenin's theorem is used in electronic circuits represented by the controlled		1	112
	sources, it is useful when it is desired to know the effect of the response in the	1		
1.7	network			
15	What is the expression of load current w.r.to Thevenin's circuit and			
	Norton's circuit?			
	In Thevenin's equivalent circuit, the load current is expressed as,			
	$I - V_{oc}$	1		
	$I_L = \frac{1}{R_{th} + R_L}$			
	(ii) In Norton's equivalent circuit, the load current is expressed as,		5	K2
	$I_{SC} \times R_{th}$			
	$I_L = \overline{R_{\mu} + R_{\mu}}$	1		

E.G.S. PILLAY ENGINEERING COLLEGE (An Autonomous Institution, Affiliated to Anna University, Chennai)

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

	PART – B (12 Mark Questions with Key)			
S.No	Questions	Mark	COs	BTL
1	(for all problems step marks can be given accordingly)			
1	Find branch currents using mesh method $V_0 = 23V$ $V_0 = 23V$ E E D A C	12		
	Using mesh current method (method of inspection)			
	Three meshes are ABCDEA,BCFB, DCFD The matrices can be formed as 18 -12 -1/1 23 -12 16 -4/2 = 0 -1 -4 13/3 0 Determinant value, $\Delta = 1472$ $\Delta I_1 = 4416$ $\Delta I_2 = 3680$ $\Delta I_3 = 1472$ $I_1 = 3A$ $I_2 = 2.5A$ $I_3 = 1A$	2 2 2 2 2 2	5	К3
		2		

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

E.G.S. PILLAY ENGINEERING COLLEGE (An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

	$R_{th} = 5.063 \Omega$			
	(c) Thevenin's equivalent circuit: $ \frac{4.5}{4.5} + \frac{4}{3} = 2.25 $ $ \frac{4.5}{5.613} + \frac{5}{5} = 2.812 $	4		
	$I_L = \frac{Voc}{Rth + R_L} = 0.559A$			
4	Find the current in BD arm by using Norton's theorem	12		
	$\frac{1.6}{1.2}$		5	К3

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

PART – C (20 Mark Questions with Key)							
S.No	Questions	Mark	COs	BTL			
1	Using superposition theorem, obtain the current through EA in figure $2^{NN} 8^{NT} 2^{V} + N$ $4^{NN} 8^{NT} 2^{V} + D$ $5^{NN} 6^{NT} 2^{NT} D$ $5^{NT} - 10^{NT} 10^{NT}$	20	5	К3			

E.G.S. PILLAY ENGINEERING COLLEGE (An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

	(a) 1V source alone acting			
	(a) <u>IV source alone acting:</u> 21 -6 -5 I1 1 -6 16 -8 I2 = 0 -5 -8 17 I3 0 $\Delta = 2876$ $\Delta I_{1'} = 208$ $I_{1}' = 0.0723A$ (b) <u>2V source alone acting:</u>	6		
	21 -6 -5 $I1$ 0 -6 16 -8 $I2 = -2-5$ -8 17 $I3$ 2 $\Delta = 2876$ $\Delta I1 = -28$ $I_1'' = -9.736 \text{ mA}$ $I_{EA} = I_1' + I_1'' = 62.564 \text{ mA}$	6		
2	Obtain the current through 15 Ω and power delivered to it using mesh method.	20		
-	$4 \text{ ohm} 6 \text{ ohm} 3 \text{ ohm}$ $120 \sqrt{\frac{+}{2}} \qquad 12 \text{ ohm} 9 \text{ ohm} 15 \text{ ohm}$			
	Mesh method (by using method of inspection)	Figure		
	16 -12 0 i1 120	mesh	5	K3
	$-12 27 -9 \qquad i2 = 0$	currents		
	0 -9 27 i3 0	(4) 4		
	Load current= $i3 = i_{15\Omega}$	<u>,</u>		
	$\Delta = 0480$ $\Delta i = 12960$	4		
	$i3 = \Delta i3 / \Delta = 2A$	4		
	$P - i3^2 R - 60W$	2		
	I = i J I I = 00W	2		