	E.G.S. PILLAY ENGINEERING COLLEGE (An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam - 611 002, Tamilnadu.	$\begin{gathered} \text { Rev. } 0 \\ \text { COE/2017/QB } \end{gathered}$

	E.G.S. PILLAY ENGINEERING COLLEGE (An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam - 611 002, Tamilnadu.	$\begin{gathered} \text { Rev. } 0 \\ \text { COE/2017/QB } \end{gathered}$

	(ii) In Norton's equivalent circuit, the load current is expressed as, $I_{L}=\frac{I_{S C} \times Z_{t h}}{Z_{t h}+Z_{L}}$			
8	Give the condition for maximum power transfer in DC and AC circuits.			
	condition for maximum power transfer in DC circuit, $P_{\max }=V^{2}{ }_{t h} / 4 R_{L}$ condition for maximum power transfer in AC circuit, $P_{\max }=V^{2}{ }_{t h} / 4 Z_{L}$, where $\mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{\mathrm{th}}$ *	1	5	K2
9	Give the limitations of the superposition theorem			
	superposition theorem doesn't useful for power calculations also not suitable for single source. It is not applicable to non-linear elements, unilateral devices and coupled circuits	1 1	1	K1
10	State Thevenin's theorem for AC circuits			
	Thevenin's theorem states that "Any two terminal linear network having a number of voltage, current sources and impedances can be replaced by a simple equivalent circuit consisting of a single voltage source in series with a impedance, where the value of the voltage source is equal to the open circuit voltage across the two terminals of the network and impedance measured between the terminals with all the energy sources are replaced by their internal impedances.	2	1	K1
11	State Norton's theorem for AC circuits			
	Norton's theorem states that "Any two terminal linear network having a number of voltage, current sources and impedances can be replaced by a simple equivalent circuit consisting of a single current source in parallel with a impedance, where the value of the current is the short circuit current between two terminals of the network and the impedance is the equivalent impedance measured between the terminals of the network with all the energy sources replaced by their internal impedance.	2	1	K1
12	State maximum power transfer theorem for AC circuits			
	The theorem states "Maximum power will be transferred from a voltage source to a load, when the load impedance is equal to the impedance of the source (or complex conjugate of that if vary both load resistance and reactance).	2	1	K1
13	Give the limitations of the reciprocity theorem			
	Reciprocity theorem only applicable for single source. It is not applicable to non-linear elements, unilateral devices and coupled circuits.	1 1	1	K1
14	When do we go for super mesh analysis?			
	Suppose any of the branches in the network has a current source, then it is difficult to apply mesh analysis, as we should assume an unknown voltage across the current source, write mesh equations and then relate the source current to the assigned mesh currents, which is a difficult approach. So we go for super mesh analysis.	2	1	K1
15	When do we go for super node?			
	Suppose any of the branches in the network has a voltage source, and then it is slightly difficult to apply nodal analysis. To overcome this difficulty, we go for super node analysis.	2	1	K1

| E.G.S. PILLAY ENGINEERING COLLEGE | |
| :---: | :---: | :---: |
| Rev. 0 | |
| (An Autonomous Institution, Affiliated to Anna University, Chennai) | COE/2017/QB |

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{PART - B (12 Mark Questions with Key)} \\
\hline S.No \& Questions \& Mark \& COs \& BTL \\
\hline 1 \& \begin{tabular}{l}
Find \(\mathbf{V}_{2}\) when \(\mathbf{I}_{\mathbf{2}}=\mathbf{0}\) \\
Using mesh analysis (method of inspection)
\[
\begin{aligned}
\& \left(\begin{array}{ccc}
3+j 4 \& -j 4 \& 0 \\
-j 4 \& 3+j 5 \& -2 \\
0 \& -2 \& 8
\end{array}\right)\left(\begin{array}{l}
I 1 \\
I 2 \\
I 3
\end{array}\right)=\left(\begin{array}{c}
30 \angle 0 \\
0 \\
V 2
\end{array}\right) \\
\& \mathrm{I}_{2}=\Delta \mathrm{I}_{2} / \Delta=0 \\
\& \text { So, } \Delta \mathrm{I}_{2}=0 \\
\& \left|\begin{array}{ccc}
3+j 4 \& 30 \angle 0 \& 0 \\
-j 4 \& 0 \& -2 \\
0 \& V 2 \& 8
\end{array}\right|=0
\end{aligned}
\] \\
Answer: \(\mathrm{V}_{2}=\mathbf{9 6}<-143.13 \mathrm{~V}\)
\end{tabular} \& \begin{tabular}{l}
12 \\
4 \\
2 \\
4
2
\end{tabular} \& 5 \& K3 \\
\hline 2 \& \begin{tabular}{l}
Obtain the voltage V 2 by using nodal method \\
Using nodal analysis (method of inspection)
\[
\left(\begin{array}{ccc}
\frac{1}{5}+\frac{1}{j 10} \& \frac{-1}{j 10} \& 0 \\
\frac{-1}{j 10} \& \frac{1}{j 10}+\frac{1}{5}+\frac{1}{j 5} \& \frac{-1}{j 5} \\
0 \& \frac{-1}{j 5} \& \frac{1}{j 5}+\frac{1}{5}
\end{array}\right)\left(\begin{array}{c}
V 1 \\
V 2 \\
V 3
\end{array}\right)=\left(\begin{array}{c}
5 \angle 30 \\
0 \\
5 \angle 90
\end{array}\right)
\]
\end{tabular} \& 12

4
4

4
4
4 \& 5 \& K3 \\
\hline
\end{tabular}

	E.G.S. PILLAY ENGINEERING COLLEGE (An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam - 611 002, Tamilnadu.	$\begin{gathered} \text { Rev. } 0 \\ \text { COE/2017/QB } \end{gathered}$

3	Find current through $3+\mathrm{j} 4 \mathrm{ohm}$ using superposition theorem Case(i) $10<0$ source alone active: Case(ii) $100<0$ source alone active: Case(iii) both $10<0$ source and $100<0$ source active: $\begin{aligned} & \Delta=-260+\mathrm{j} 120=286.36<155.22 \\ & \Delta \mathrm{I}_{2}=-4300+\mathrm{j} 2250=4853.1<152.4 \mathrm{~A} \end{aligned}$ Answer: current through $3+\mathrm{j} 4$ ohm $=\mathbf{1 6 . 9 3 - j 0 . 8 3}=\mathbf{1 6 . 9 5}<-\mathbf{2 . 8 2} \mathrm{A}$	12	5	K3
4	Obtain Norton's equivalent circuit across the terminals A\&B for the network given.	12	5	K3
	(a) To find IN or Isc Isc $=9.49<18.4 \mathrm{~A}$	4		

	E.G.S. PILLAY ENGINEERING COLLEGE (An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam - 611 002, Tamilnadu.	$\begin{gathered} \text { Rev. } 0 \\ \text { COE/2017/QB } \end{gathered}$

\begin{tabular}{|c|c|c|c|c|}
\hline \& \begin{tabular}{l}
(b) To find \(\mathbf{Z}_{\mathrm{th}}\) :
\[
\mathrm{Z}_{\mathrm{th}}=(2+3+\mathrm{j} 15) \|(-\mathrm{j} 5)=\mathbf{7 . 0 7}<-\mathbf{8 1 . 8} \Omega
\] \\
(c) Norton's equivalent circuit:
\end{tabular} \& 4

4 \& \& \\
\hline 5 \& For the network given, find Ix and verify reciprocity theorem. \& 12 \& \& \\
\hline \& Using mesh analysis (method of inspection)

$$
\begin{aligned}
& \left(\begin{array}{ccc}
10+j 5 & -j 5 & 0 \\
-j 5 & 10+j 5-j 5 & j 5 \\
0 & j 5 & 5-j 5
\end{array}\right)\left(\begin{array}{l}
I 1 \\
I 2 \\
I 3
\end{array}\right)=\left(\begin{array}{c}
100 \angle 45 \\
0 \\
0
\end{array}\right) \\
& \mathbf{I x}=I_{3}=\Delta \mathrm{I}_{3} / \Delta=\mathbf{2 . 1 6 9}<\mathbf{5 7 . 5 3} \mathbf{A}
\end{aligned}
$$ \& 5 \& 5 \& K3 \\

\hline
\end{tabular}

	E.G.S. PILLAY ENGINEERING COLLEGE (An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam - 611 002, Tamilnadu.	$\begin{gathered} \text { Rev. } 0 \\ \text { COE/2017/QB } \end{gathered}$

	Case(ii) To find Ix: Using mesh analysis (method of inspection) $\begin{aligned} & \left(\begin{array}{ccc} 10+j 5 & -j 5 & 0 \\ -j 5 & 10+j 5-j 5 & j 5 \\ 0 & j 5 & 5-j 5 \end{array}\right)\left(\begin{array}{c} I 1 \\ I 2 \\ I 3 \end{array}\right)=\left(\begin{array}{c} 0 \\ 0 \\ 100 \angle 45 \end{array}\right) \\ & \mathbf{I x}=\mathrm{I}_{1}=\Delta \mathrm{I}_{1} / \Delta=\mathbf{2 . 1 6 9}<\mathbf{5 7 . 5 3} \mathrm{A} \end{aligned}$ Ix is same in both cases. Hence, the reciprocity theorem is verified.	5			
6	Determine the load impedance that can be connected across terminals A\& B for maximum power transfer to load impedance. Also calculate the maximum power transfer to load.	12			
	(i)To find V_{oc} : $\text { Voc }=I_{1} \times(4+\mathrm{j} 4)$ Usin CDP, $\quad I_{1}=5 \times \frac{2+j 2}{10+4+j 4+2+j 2}=0.8275 \angle 24.44 A$ $\text { Voc }=4.684<69.44 \mathrm{~V}=1.645+\mathrm{j} 4.386 \mathrm{~V}$ (ii) To find \mathbf{Z}_{th} : $\mathbf{Z}_{\mathrm{th}}=(2+\mathrm{j} 2+10) \\|(4+\mathrm{j} 4)=4.03<33.9 \Omega=3.35+\mathrm{j} 2.25 \Omega$	4	5	K3	

	E.G.S. PILLAY ENGINEERING COLLEGE (An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam - 611 002, Tamilnadu.	$\begin{gathered} \text { Rev. } 0 \\ \text { COE/2017/QB } \end{gathered}$

	E.G.S. PILLAY ENGINEERING COLLEGE (An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam - 611 002, Tamilnadu.	$\begin{gathered} \text { Rev. } 0 \\ \text { COE/2017/QB } \end{gathered}$

| E.G.S. PILLAY ENGINEERING COLLEGE | |
| :---: | :---: | :---: |
| Rev.0 | (An Autonomous Institution, Affiliated to Anna University, Chennai) |
| Nagore Post, Nagapattinam - 611 002, Tamilnadu. | COE/2017/QB |

| E.G.S. PILLAY ENGINEERING COLLEGE | |
| :---: | :---: | :---: |
| Rev.0 | |
| (An Autonomous Institution, Affiliated to Anna University, Chennai) | COE/2017/QB |

