

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

|      | PART – A (2 Mark Questions With Key)                                                                                                                                                                                                                            |        |     |      |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|------|
| S.No | Questions                                                                                                                                                                                                                                                       | Mark   | COs | BTL  |
| 1    | What are impedance and admittance?                                                                                                                                                                                                                              |        |     |      |
|      | The ratio of the phasor voltage V to the phasor current I is called impedance, $Z = \frac{V}{I}$                                                                                                                                                                | 1      | 1   | K1   |
|      | The inverse of impedance is called admittance, $Y = \frac{1}{Z}$                                                                                                                                                                                                | 1      | 1   |      |
| 2    | What are reactance and susceptance?                                                                                                                                                                                                                             |        |     |      |
|      | When impedance is written in cartesian form, the real part is the resistance R and the imaginary part is the reactance.<br>When admittance is written in cartesian form, the real part is admittance Y, and imaginary part is susceptance, B.                   | 1<br>1 | 1   | K1   |
| 3    | A series RC circuit with R =20 ohms and C = 127 microfarad has 160 V, 50 Hz                                                                                                                                                                                     |        |     |      |
|      | supply connected to it. Find the circuit impedance and admittance                                                                                                                                                                                               |        |     |      |
|      | $X_{\rm C} = 1/2\pi  {\rm fC} = 25  {\rm ohms}$                                                                                                                                                                                                                 | 1      |     |      |
|      | $Z = SQRT \text{ of } (R^2 + X_C^2) = 32 \text{ ohms}$                                                                                                                                                                                                          |        | 5   | K2   |
|      | Y=1/Z=0.031 Siemens or mho                                                                                                                                                                                                                                      | 1      |     |      |
| 4    | A 100 ohm resistor and a 20 mH inductor are connected in series across a 230 V, 50                                                                                                                                                                              |        |     |      |
|      | Hz supply. Find the circuit impedance and admittance                                                                                                                                                                                                            |        |     |      |
|      | $X_L = 2\pi fL = 6.283 \text{ ohms}$                                                                                                                                                                                                                            | 2      | ~   | IZ O |
|      | $Z=$ SQRT of ( $R^2 + X_L^2$ ) = 100.197 ohms                                                                                                                                                                                                                   | 2      | 5   | K2   |
| 5    | $Y = 1/Z = 9.98 \times 10^{-3}$ Siemens or mho                                                                                                                                                                                                                  | -      |     |      |
| 5    | Convert a 100 <0 V, 50Ω into equivalent current source.                                                                                                                                                                                                         |        |     |      |
|      | $I = \frac{V}{Z} = \frac{100 \angle 0}{50} = 2 \angle 0A$ $V = \begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ $V = \begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ $V = \begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$ | 2      | 5   | K2   |
| 6    | Convert a 10 <90A, 0.5 $\Omega$ into equivalent<br>voltage source.<br>$V = I \times Z = 10 \angle 90 \times 0.5 = 5 \angle 90V$                                                                                                                                 | 2      | 5   | K2   |
| 7    | What is the expression of load current w.r.to Thevenin's circuit and Norton's circuit?In Thevenin's equivalent circuit, the load current is expressed as, $I_L = \frac{V_{OC}}{Z_{th} + Z_L}$                                                                   | 1      | 5   | K2   |



(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

|    | (ii) In Norton's equivalent circuit, the load current is expressed as,                                                                                                       |   |     |     |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|-----|
|    | $I_{sc} \times Z_{d}$                                                                                                                                                        |   |     |     |
|    | $I_L = \frac{I_{SC} \times Z_{th}}{Z_{th} + Z_L}$                                                                                                                            |   |     |     |
|    | $Z_{th} + Z_L$                                                                                                                                                               |   |     |     |
|    |                                                                                                                                                                              |   |     |     |
| 8  | Give the condition for maximum power transfer in DC and AC circuits.                                                                                                         |   |     |     |
|    | condition for maximum power transfer in DC circuit, $P_{max} = \frac{V^2 t}{4R_L}$                                                                                           | 1 |     |     |
|    | $/4R_L$                                                                                                                                                                      | - | _   |     |
|    |                                                                                                                                                                              |   | 5   | K2  |
|    | condition for maximum power transfer in AC circuit, $P_{max} = \frac{V^2 th}{4ZL}$ , where $Z_L = Z_{th} *$                                                                  | 1 |     |     |
| 9  | Give the limitations of the superposition theorem                                                                                                                            |   |     |     |
|    | superposition theorem doesn't useful for power calculations also not suitable for single                                                                                     | 1 |     |     |
|    | source.                                                                                                                                                                      |   | 1   | K1  |
| 10 | It is not applicable to non-linear elements, unilateral devices and coupled circuits                                                                                         | 1 |     |     |
| 10 | State Thevenin's theorem for AC circuits                                                                                                                                     |   |     |     |
|    | Thevenin's theorem states that "Any two terminal linear network having a number of voltage, current sources and impedances can be replaced by a simple equivalent circuit    |   |     |     |
|    | consisting of a single voltage source in series with a impedance, where the value of the                                                                                     |   |     |     |
|    | voltage source is equal to the open circuit voltage across the two terminals of the network                                                                                  | 2 | 1   | K1  |
|    | and impedance measured between the terminals with all the energy sources are replaced                                                                                        |   |     |     |
|    | by their internal impedances.                                                                                                                                                |   |     |     |
| 11 | State Norton's theorem for AC circuits                                                                                                                                       |   |     |     |
|    | Norton's theorem states that "Any two terminal linear network having a number of                                                                                             |   |     |     |
|    | voltage, current sources and impedances can be replaced by a simple equivalent circuit                                                                                       |   |     |     |
|    | consisting of a single current source in parallel with a impedance, where the value of the                                                                                   | 2 | 1   | K1  |
|    | current is the short circuit current between two terminals of the network and the impedance                                                                                  | 2 | 1   | IXI |
|    | is the equivalent impedance measured between the terminals of the network with all the                                                                                       |   |     |     |
|    | energy sources replaced by their internal impedance.                                                                                                                         |   |     |     |
| 12 | State maximum power transfer theorem for AC circuits                                                                                                                         |   |     |     |
|    | The theorem states "Maximum power will be transferred from a voltage source to a load,                                                                                       |   |     |     |
|    | when the load impedance is equal to the impedance of the source (or complex conjugate of that if vary both load resistance and reactance).                                   | 2 | 1   | K1  |
|    | of that if vary both load resistance and reactance).                                                                                                                         |   |     |     |
| 13 | Give the limitations of the reciprocity theorem                                                                                                                              |   |     |     |
|    | Reciprocity theorem only applicable for single source.                                                                                                                       | 1 | 1   | K1  |
|    | It is not applicable to non-linear elements, unilateral devices and coupled circuits.                                                                                        | 1 | 1   | KI  |
| 14 | When do we go for super mesh analysis?                                                                                                                                       |   |     |     |
|    | Suppose any of the branches in the network has a current source, then it is difficult to apply                                                                               |   |     |     |
|    | mesh analysis, as we should assume an unknown voltage across the current source, write                                                                                       | 2 | 1   | K1  |
|    | mesh equations and then relate the source current to the assigned mesh currents, which is                                                                                    | - | · · |     |
| 17 | a difficult approach. So we go for super mesh analysis.                                                                                                                      |   |     |     |
| 15 | When do we go for super node?                                                                                                                                                |   |     |     |
|    | Suppose any of the branches in the network has a voltage source, and then it is slightly difficult to apply nodel englying. To average this difficulty, we go for super node | 2 | 1   | V1  |
|    | difficult to apply nodal analysis. To overcome this difficulty, we go for super node                                                                                         | 2 | 1   | K1  |
|    | analysis.                                                                                                                                                                    |   |     |     |



**E.G.S. PILLAY ENGINEERING COLLEGE** (An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

|      | PART – B (12 Mark Questions with Key)                                                                                                                                                                                                                                                                                                                                                                                      |       |     |     |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|-----|
| S.No | Questions                                                                                                                                                                                                                                                                                                                                                                                                                  | Mark  | COs | BTL |
| 1    | Find V <sub>2</sub> when I <sub>2=0</sub><br>$ \begin{array}{c}  & & & & \\  & & & & \\  & & & & \\  & & & &$                                                                                                                                                                                                                                                                                                              | 12    |     |     |
|      | Using mesh analysis (method of inspection)<br>$ \begin{pmatrix} 3+j4 & -j4 & 0 \\ -j4 & 3+j5 & -2 \\ 0 & -2 & 8 \end{pmatrix} \begin{pmatrix} I1 \\ I2 \\ I3 \end{pmatrix} = \begin{pmatrix} 30 \angle 0 \\ 0 \\ V2 \end{pmatrix} $                                                                                                                                                                                        | 4     | 5   | K3  |
|      | $I_{2} = \Delta I_{2} / \Delta = 0  \text{So, } \Delta I_{2} = 0$ $\begin{vmatrix} 3 + j4 & 30 \angle 0 & 0 \\ -j4 & 0 & -2 \\ 0 & V2 & 8 \end{vmatrix} = 0$ Answer: $V_{2} = 96 < -143.13 \text{ V}$                                                                                                                                                                                                                      | 2 4 2 |     |     |
| 2    | Obtain the voltage V2 by using nodal method                                                                                                                                                                                                                                                                                                                                                                                | 12    |     |     |
|      | 5130A A \$52 A \$52 \$5190 A                                                                                                                                                                                                                                                                                                                                                                                               |       |     |     |
|      | Using nodal analysis (method of inspection)<br>$\begin{pmatrix} \frac{1}{5} + \frac{1}{j10} & \frac{-1}{j10} & 0 \\ \frac{-1}{j10} & \frac{1}{j10} + \frac{1}{5} + \frac{1}{j5} & \frac{-1}{j5} \\ 0 & \frac{-1}{j5} & \frac{1}{j5} + \frac{1}{5} \end{pmatrix} \begin{pmatrix} V_1 \\ V_2 \\ V_3 \end{pmatrix} = \begin{pmatrix} 5 \angle 30 \\ 0 \\ 5 \angle 90 \end{pmatrix}$ $\Delta = -6.311 - j0.025 = 6.311 < -180$ | 4     | 5   | K3  |
|      | $\Delta = -6.311 - j0.025 = 6.311 < -180$<br>$\Delta V_2 = 0.173 - j0.242 = 0.298 < -54.44$                                                                                                                                                                                                                                                                                                                                | 4     |     |     |
|      | $V2 = \Delta V_2 / \Delta = 0.0472 < 125.56 V$                                                                                                                                                                                                                                                                                                                                                                             |       |     |     |



(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.





(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.





(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.





(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.



|      | PART – C (20 Mark Questions with Key)                                                                                                                                                                                                                              |      |     |     |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|-----|
| S.No | Questions                                                                                                                                                                                                                                                          | Mark | COs | BTL |
| 1    | Use Thevenin's theorem to find current through $2+j5 \Omega$ impedance.                                                                                                                                                                                            | 20   |     |     |
|      | (i) To find Voc:<br>4 mt Vod Vil<br>4 voe                                                                                                                                                                                      | 6    | 5   | К3  |
|      | $V_{AB}=Voc=?  Voc+V_1-V_2=0 \text{ so, } Voc=V_2-V_1$<br>Usin VDP, $V_1=40 \angle 0 \times \frac{4}{4-j10} = 5.52+j13.79V$<br>$V_2=40 \angle 0 \times \frac{j12}{j12+8} = 27.69+j18.46V$<br>Voc= V <sub>2</sub> -V <sub>1</sub> = 22.1751+j4.668 V = 22.66<11.9 V |      |     |     |



(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.





(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.





(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

