

E.G.S. PILLAY ENGINEERING COLLEGE
(An Autonomous Institution, Affiliated to Anna University, Chennai)
Nagore Post, Nagapattinam - 611 002, Tamilnadu.

Rev. 0
COE/2017/QB

| E.G.S. PILLAY ENGINEERING COLLEGE | |
| :---: | :---: | :---: |
| Rev. 0 | |

	E.G.S. PILLAY ENGINEERING COLLEGE (An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam - 611 002, Tamilnadu.	$\begin{gathered} \text { Rev. } 0 \\ \text { COE/2017/QB } \end{gathered}$

	consisting of 16 ohms resistor in series with 38.2 mH inductor in each branch.			
	$\begin{array}{lll} \begin{array}{l} \mathrm{Z}+\mathrm{I}_{\mathrm{ph}}+\mathrm{I}_{\mathrm{L}}+\mathrm{pf} \\ \mathrm{P}+\mathrm{Q}+\mathrm{S} \end{array} & \\ \hline & \checkmark & \mathrm{X}_{\mathrm{L}}=2 \pi \mathrm{fL}=12 \text { ohms } \\ & \checkmark & \mathrm{Z}_{\mathrm{ph}}=\sqrt{ }\left(\mathrm{R}^{2}+\mathrm{X}_{\mathrm{c}}^{2}\right)=20 \text { ohms } \\ & \checkmark & \mathrm{V}_{\mathrm{L}}=400 \mathrm{~V}=\quad \mathrm{V}_{\mathrm{ph}} \\ & \checkmark & \mathrm{I}_{\mathrm{ph}}=\mathrm{V}_{\mathrm{ph}} / \mathrm{Z}_{\mathrm{ph}}=20 \mathrm{~A} \\ & \checkmark & \mathrm{I}_{\mathrm{L}}=\sqrt{3} \mathrm{I}_{\mathrm{ph}}=34.64 \mathrm{~A} \\ & \checkmark & \mathrm{Pf}=\mathrm{R} / \mathrm{Z}=0.8 \quad(\mathrm{lag}) \\ & \checkmark & \mathrm{P}=\sqrt{ } 3 \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \mathrm{e}=19200 \text { watts } \\ & \checkmark & \mathrm{Q}=\sqrt{3} \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \sin \mathrm{e}=14400 \mathrm{VAR} \\ & \checkmark & \mathrm{~S}=\sqrt{ } 3 \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \quad=24000 \mathrm{VA} \end{array}$	$\begin{gathered} 2+1+1+2 \\ 2+2+2 \end{gathered}$		
5	Determine the branch currents and voltages of the network given using Tie-set schedule.	12		
	Solun (i) To draw the graph: Groypt Orienter Grgph (ii) To Araw Tree $\underbrace{x}_{3} \pi A_{d}^{2}$ The set-1: $[a, c]$ $\begin{aligned} N & =3 ; B=5 \\ L & =B-a+1 \\ & =5-3+1 \\ & =3 \end{aligned}$ Tieset $2[b, c, d]$ Tieset -3	4	3	K3

E.G.S. PILLAY ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Nagore Post, Nagapattinam - 611 002, Tamilnadu.

Rev. 0 COE/2017/QB

E.G.S. PILLAY ENGINEERING COLLEGE
(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam - 611 002, Tamilnadu.

Rev. 0
COE/2017/QB

	E.G.S. PILLAY ENGINEERING COLLEGE (An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam - 611 002, Tamilnadu.	$\begin{gathered} \text { Rev. } 0 \\ \text { COE/2017/QB } \end{gathered}$

	E.G.S. PILLAY ENGINEERING COLLEGE (An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam - 611 002, Tamilnadu.	$\begin{gathered} \text { Rev. } 0 \\ \text { COE/2017/QB } \end{gathered}$

6	Find the line currents for the unbalanced delta connected load of impedances $Z_{R Y}=20+j 30 \Omega, Z_{Y B}=6-j 10 \Omega, Z_{B R}=12+j 10 \Omega$ are connected to a 3 phase 200 V supply, if the phase sequence is (i) RYB and (iii) RBY (i) RYB PHASE SEQUENCE $\begin{aligned} & \mathbf{I}_{\mathbf{R Y}}=\frac{200 \angle 0}{20+j 30}=5.55 \angle-56.31 A=3.08-j 4.62 A \\ & \mathbf{I}_{\mathbf{Y} B}=\frac{200 \angle-120}{6-j 10}=17.15 \angle-60.96 A=8.32-j 15 A \\ & \mathbf{I}_{B R}=\frac{200 \angle 120}{12+j 10}=12.8 \angle 80.2 A=2.18+j 12.6 A \\ & \mathbf{I}_{\mathbf{R}}=\mathbf{I}_{\mathbf{R Y}}-\mathbf{I}_{B R}=\mathbf{0 . 9 - \mathbf { j } 1 7 . 2 2 = 1 7 . 2 4 ~ A} \\ & \mathbf{I}_{\mathbf{Y}}=\mathbf{I}_{\mathbf{Y B}}-\mathbf{I}_{\mathbf{R Y}}=\mathbf{5 . 2 4 - \mathbf { j } 1 0 . 3 8 = \mathbf { 1 1 . 6 3 } \mathrm { A }} \\ & \mathbf{I}_{\mathbf{B}}=\mathbf{I}_{\mathbf{B R}}-\mathbf{I}_{\mathbf{Y B}}=\mathbf{- 6 . 1 4 + j} \mathbf{2 7 . 6}=\mathbf{2 8 . 2 7} \mathbf{A} \end{aligned}$ (ii)RBY PHASE SEQUENCE $\begin{aligned} & \mathbf{I}_{\mathbf{R Y}}=\frac{200 \angle 0}{20+j 30}=5.55 \angle-56.31 A=3.08-j 4.62 A \\ & \mathbf{I}_{\mathbf{Y} B}=\frac{200 \angle 120}{6-j 10}=17.15 \angle 179.04 A=-17.14+j 0.28 A \\ & \mathbf{I}_{B R}=\frac{200 \angle-120}{12+j 10}=12.8 \angle-159.8 A=-12-j 4.42 A \\ & \mathbf{I}_{\mathbf{R}}=\mathbf{I}_{\mathbf{R Y}}-\mathbf{I}_{\mathbf{B R}}=\mathbf{1 5 . 0 8 - j} \mathbf{j} . \mathbf{2}=\mathbf{1 5 . 0 8} \mathrm{A} \\ & \mathbf{I}_{\mathbf{Y}}=\mathbf{I}_{\mathbf{Y B}}-\mathbf{I}_{\mathbf{R Y}}=\mathbf{- 2 0 . 2 2 + j 4 . 9 = \mathbf { 2 0 . 8 } \mathrm { A }} \\ & \mathbf{I}_{\mathbf{B}}=\mathbf{I}_{\mathbf{B R}}-\mathbf{I}_{\mathbf{Y B}}=\mathbf{5 . 1 4 - \mathbf { j } 4 . 7 = \mathbf { 6 . 9 6 } \mathrm { A }} \end{aligned}$	12 4	3	K3

PART - C (20 Mark Questions with Key)								Mark	COs	BTL
S.No	Questions									
1	Determine the DUAL of the Network and also verify it.									

E.G.S. PILLAY ENGINEERING COLLEGE
(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam - 611 002, Tamilnadu.

Rev. 0 COE/2017/QB
 Nagore Post, Nagapattinam - 611 002, Tamilnadu.

Dual N/W:

To Fied Mest Eyquicions.

Mest Equartions cate
Mash-I
ie smart $=1, i,+0.1 \frac{d r_{1}}{d t}-0.1 \frac{d i n}{d t}+5 i,-5 i_{2}$
iz.

$$
i_{0} \sin \cdot 55=10 i_{1}+0.1 \frac{d}{d t}\left(i_{1}-i_{3}\right)+5\left(i-i_{2}\right)
$$

Mess II

$$
\begin{aligned}
& \text { ix, } \left.-5 \sin (\cdots+x+5)=5\left(i_{2}=i_{1}\right)+\frac{1}{0-5} \cdot \sqrt{\left(T_{2}-b\right)}+1 t+4 i_{2}\right) \\
& \text { - (c) }
\end{aligned}
$$

$$
\begin{aligned}
& 0=2 \frac{d i_{3}}{d t}+2 i_{3}+\frac{1}{0.5} \int i_{1} d t-\frac{1}{0.5} \int i_{2} d t+0.1 \frac{d i_{3}}{d t} \\
& i_{0} \\
& 0=2 \frac{d i_{3}}{d t}+2 \cdot i_{3}+\frac{1}{0.5} \int\left(i_{1}-i_{2}\right) d t+0.1 \frac{d}{d t}\left(i_{3}-i_{1}\right) \\
& \text { Node equations of ha Dual N/w: }
\end{aligned}
$$

Apply KCL at ail Nods:
$\frac{N \text { ode }-1:}{20 \sin 4}=i_{1}+i_{2}+i_{3}$
$\dot{c}_{c}=e \frac{L_{u}}{d t}$

$$
\begin{aligned}
& t=i_{1}+i_{2}+i_{3} \\
& =10\left(v_{1}-0\right)+5\left(v_{1}-v_{2}\right)+0.1 \frac{1}{\sqrt{t}}\left(v_{1}-v_{3}\right)
\end{aligned}
$$

$$
20 \sin \omega \omega_{1}=10 v_{1}+5\left(v_{1}-v_{2}\right)+0.1 \frac{d}{d t}\left(v_{1}-v_{3}\right) ?
$$

Node-2:
$i_{2}=5 \quad \sin \left(\sin (4+5)+i_{4}+i_{5}\right.$
$-5 \sin \left(G+t_{5}\right)=-i_{2}+i_{4}+i_{5}$
$=-5\left(v_{1}-v_{2}\right)+4\left(v_{2}-0\right)+\frac{1}{0_{5}}\left(v_{2}-v_{3}\right) t$
$-5 \sin (w+6.5)=5\left(v_{2}-v_{1}\right)+4_{1} v_{2}+\frac{1}{0.5} \int\left(v_{2}-v_{3}\right) 2 t$,
Node-3:

$$
i_{3}+i_{5}=i_{6}+i_{7} \ldots,
$$

$\therefore 0=i_{6}+i_{7}-i_{3}-i_{5}$
$\theta=2 \frac{d\left(v_{3}-0\right)_{1}}{d f}\left(v_{3}-0\right)-a_{1} \frac{d\left(v_{1}-v_{2}\right)}{d t}-\frac{1}{0.5}\left(v_{2}-v_{3}\right) d$
$0=2 \frac{d v_{3}}{d t}+2 v_{3}+\frac{1}{b .5} \int\left(v_{3}-v_{2}\right) d_{t}+0.1 \frac{d}{d t}\left(v_{2}-v_{1}\right)$
Compare aque (0), (2) (3) wik equs (4) (5) f(6).
If is observal Hat the mest equelionst he original netuste \& Nosi equasions of ho Lual metwork are in itentical from.

	E.G.S. PILLAY ENGINEERING COLLEGE (An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam - 611 002, Tamilnadu.	$\begin{gathered} \text { Rev. } 0 \\ \text { COE/2017/QB } \end{gathered}$

